Skip to main content
Genetics logoLink to Genetics
. 1975 Oct;81(2):349–355. doi: 10.1093/genetics/81.2.349

Sister Chromatid Exchange in Xeroderma Pigmentosum Cells That Are Defective in DNA Excision Repair or Post-Replication Repair

Sheldon Wolff 1,2, Judy Bodycote 1,2, G H Thomas 1,2, James E Cleaver 1,2
PMCID: PMC1213403  PMID: 54281

Abstract

The formation of sister chromatid exchanges has been postulated to depend upon the action of DNA repair enzymes. Our experiments with various human cell lines show that the yield of sister chromatid exchanges is within normal limits in both excision-repair-defective and post-replication-repair-defective cells from the autosomal recessive disease, xeroderma pigmentosum. These results indicate that hypotheses invoking known DNA repair processes to account for the recombination of sister chromatids are inadequate and that the exact enzymatic processes are as yet unknown.

Full Text

The Full Text of this article is available as a PDF (708.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender M. A., Griggs H. G., Bedford J. S. Recombinational DNA repair and sister chromatid exchanges. Mutat Res. 1974 Aug;24(2):117–123. doi: 10.1016/0027-5107(74)90125-0. [DOI] [PubMed] [Google Scholar]
  2. Brewen J. G., Peacock W. J. The effect of tritiated thymidine on sister-chromatid exchange in a ring chromosome. Mutat Res. 1969 May-Jun;7(3):433–440. doi: 10.1016/0027-5107(69)90114-6. [DOI] [PubMed] [Google Scholar]
  3. Chaganti R. S., Schonberg S., German J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4508–4512. doi: 10.1073/pnas.71.11.4508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleaver J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. doi: 10.1038/218652a0. [DOI] [PubMed] [Google Scholar]
  5. Kleijer W. J., Lohman P. H., Mulder M. P., Bootsma D. Repair of x-ray damage in DNA of cultivated cells from patients having xeroderma pigmentosum. Mutat Res. 1970 May;9(5):517–523. doi: 10.1016/0027-5107(70)90036-9. [DOI] [PubMed] [Google Scholar]
  6. Korenberg J. R., Freedlender E. F. Giemsa technique for the detection of sister chromatid exchanges. Chromosoma. 1974;48(4):355–360. doi: 10.1007/BF00290992. [DOI] [PubMed] [Google Scholar]
  7. Kraemer K. H., Coon H. G., Petinga R. A., Barrett S. F., Rahe A. E., Robbins J. H. National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20014, USA. Proc Natl Acad Sci U S A. 1975 Jan;72(1):59–63. doi: 10.1073/pnas.72.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lehmann A. R., Kirk-Bell S., Arlett C. F., Paterson M. C., Lohman P. H., de Weerd-Kastelein E. A., Bootsma D. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci U S A. 1975 Jan;72(1):219–223. doi: 10.1073/pnas.72.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Parrington J. M., Delhanty J. D., Baden H. P. Unscheduled DNA synthesis, u.v.-induced chromosome aberrations and SV 40 transformation in cultured cells from xeroderma pigmentosum. Ann Hum Genet. 1971 Oct;35(2):149–160. doi: 10.1111/j.1469-1809.1956.tb01387.x. [DOI] [PubMed] [Google Scholar]
  10. Perry P., Wolff S. New Giemsa method for the differential staining of sister chromatids. Nature. 1974 Sep 13;251(5471):156–158. doi: 10.1038/251156a0. [DOI] [PubMed] [Google Scholar]
  11. Poon P. K., O'Brien R. L., Parker J. W. Defective DNA repair in Fanconi's anaemia. Nature. 1974 Jul 19;250(463):223–225. doi: 10.1038/250223a0. [DOI] [PubMed] [Google Scholar]
  12. Rommelaere J., Susskind M., Errera M. Chromosome and chromatid exchanges in Chinese hamster cells. Chromosoma. 1973;41(3):243–257. doi: 10.1007/BF00344019. [DOI] [PubMed] [Google Scholar]
  13. Sasaki M. S. DNA repair capacity and susceptibility to chromosome breakage in xeroderma pigmentosum cells. Mutat Res. 1973 Nov;20(2):291–293. doi: 10.1016/0027-5107(73)90202-9. [DOI] [PubMed] [Google Scholar]
  14. Setlow R. B., Regan J. D., German J., Carrier W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035–1041. doi: 10.1073/pnas.64.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stoutenborough K. A., Sutherland J. M., Meineke H. A., Light I. J. Erythropoietin levels in cord blood of control infants and infants with respiratory distress syndrome. Acta Paediatr Scand. 1969 Mar;58(2):121–124. doi: 10.1111/j.1651-2227.1969.tb04694.x. [DOI] [PubMed] [Google Scholar]
  16. Wolff S., Bodycote J., Painter R. B. Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: the necessity for cells to pass through S. Mutat Res. 1974 Oct;25(1):73–81. doi: 10.1016/0027-5107(74)90220-6. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES