Skip to main content
Genetics logoLink to Genetics
. 1975 Nov;81(3):571–594.

Population Genetics of Euphydryas Butterflies. I. Genetic Variation and the Neutrality Hypothesis

Stephen W McKechnie 1, Paul R Ehrlich 1, Raymond R White 1
PMCID: PMC1213422  PMID: 1205135

Abstract

Twenty-one populations of the checkerspot butterfly, Euphydryas editha, and ten populations of Euphydryas chalcedona were sampled for genetic variation at eight polymorphic enzyme loci. Both species possessed loci that were highly variable from population to population and loci that were virtually identical across all populations sampled. Our data indicate that the neutrality hypothesis is untenable for the loci studied, and therefore selection is indicated as the major factor responsible for producing these patterns. Thorough ecological work allowed gene flow to be ruled out (in almost all instances) as a factor maintaining similar gene frequencies across populations. The Lewontin-Krakauer test indicated magnitudes of heterogeneity among standardized variances of gene frequencies inconsistent with the neutrality hypothesis. The question of whether or not to correct this statistic for sample size is discussed. Observed equitability of gene frequencies of multiple allelic loci was found to be greater than that predicted under the neutrality hypothesis. Genetic differentiation presisting through two generations was found between the one pair of populations known to exchange significant numbers of individuals per generation. Two matrices of genetic distance between populations, based on the eight loci sampled, were found to be significantly correlated with a matrix of environmental distance, based on measures of fourteen environmental parameters. Correlations between gene frequencies and environmental parameters, results of multiple regression analysis, and results of principle component analysis showed strong patterns of association and of "explained" variation. The correlation analyses suggest which factors might be further investigated as proximate selective agents.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala F. J., Powell J. R., Tracey M. L., Mourão C. A., Pérez-Salas S. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics. 1972 Jan;70(1):113–139. doi: 10.1093/genetics/70.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ehrlich P. R., Raven P. H. Differentiation of populations. Science. 1969 Sep 19;165(3899):1228–1232. doi: 10.1126/science.165.3899.1228. [DOI] [PubMed] [Google Scholar]
  3. Ehrlich P. R., White R. R., Singer M. C., McKechnie S. W., Gilbert L. E. Checkerspot butterflies: a historical perspective. Science. 1975 Apr 18;188(4185):221–228. doi: 10.1126/science.1118723. [DOI] [PubMed] [Google Scholar]
  4. Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
  5. Kimura M, Weiss G H. The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. Genetics. 1964 Apr;49(4):561–576. doi: 10.1093/genetics/49.4.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lewontin R. C., Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973 May;74(1):175–195. doi: 10.1093/genetics/74.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Richmond R. C. Enzyme variability in the Drosophila willistoni group. 3. Amounts of variability in the superspecies, D. paulistorum. Genetics. 1972 Jan;70(1):87–112. doi: 10.1093/genetics/70.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wallace D. G., Maxson L. R., Wilson A. C. Albumin evolution in frogs: a test of the evolutionary clock hypothesis. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3127–3129. doi: 10.1073/pnas.68.12.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES