Skip to main content
Genetics logoLink to Genetics
. 1976 Apr;82(4):645–663. doi: 10.1093/genetics/82.4.645

Genetic Analysis of Petite Mutants of SACCHAROMYCES CEREVISIAE : Transmissional Types

Philip S Perlman 1
PMCID: PMC1213486  PMID: 773749

Abstract

We have studied a number of petite [rho- ] mutants of Saccharomyces cerevisiae induced in a wild-type strain of mitochondrial genotype [ome- CHL R ERYS OLIS1,2,3 PARS] by Berenil and ethidium bromide, all of which have retained two mitochondrial genetic markers, [CHLR] and [ERYS], but have lost all other known markers. Though stable in their ability to retain these markers in their genome, these mutants vary widely among themselves in suppressiveness and in the extent to which the markers are transmitted on crossing to a common wild-type tested strain. In appropriate crosses all of the strains examined in this study demonstrate mitochondrial polarity, and thus have also retained the [ome-] locus in a functional form; however, five different transmissional types were obtained, several of them quite unusual, particularly among the strains originally induced by Berenil. One of the most interesting types is the one that appears to reverse the parental genotypes with [CHLR ERYS] predominating over [CHLS ERYR] in the diploid [rho+] progeny, rather than the reverse, which is characteristic of analogous crosses with [rho+] or other petites. Mutants in this class also exhibited low or no suppressiveness. Since all of the petites reported here are derived from the same wild-type parent, and so have the same nuclear background, we have interpreted the transmissional differences as being due to different intramolecular arrangements of largely common retained sequences.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alesen L. A. PHYSICIANS IN POLITICS-AS GOOD CITIZENS. Calif Med. 1952 Jun;76(6):367–369. [PMC free article] [PubMed] [Google Scholar]
  2. Avner P. R., Coen D., Dujon B., Slonimski P. P. Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):9–52. doi: 10.1007/BF00292982. [DOI] [PubMed] [Google Scholar]
  3. Birky C. W., Jr Effects of glucose repression of the transmission and recombination of mitochondrial genes in yeast (Saccharomyces cerevisiae). Genetics. 1975 Aug;80(4):695–709. doi: 10.1093/genetics/80.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coen D., Deutsch J., Netter P., Petrochilo E., Slonimski P. P. Mitochondrial genetics. I. Methodology and phenomenology. Symp Soc Exp Biol. 1970;24:449–496. [PubMed] [Google Scholar]
  5. Deutsch J., Dujon B., Netter P., Petrochilo E., Slonimski P. P., Bolotin-Fukuhara M., Coen D. Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the p+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics. 1974 Feb;76(2):195–219. doi: 10.1093/genetics/76.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dujon B., Slonimski P. P., Weill L. Mitochondrial genetics IX: A model for recombination and segregation of mitochondrial genomes in saccharomyces cerevisiae. Genetics. 1974 Sep;78(1):415–437. doi: 10.1093/genetics/78.1.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ephrussi B., Jakob H., Grandchamp S. Etudes Sur La SuppressivitE Des Mutants a Deficience Respiratoire De La Levure. II. Etapes De La Mutation Grande En Petite Provoquee Par Le Facteur Suppressif. Genetics. 1966 Jul;54(1):1–29. doi: 10.1093/genetics/54.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faye G., Fukuhara H., Grandchamp C., Lazowska J., Michel F., Casey J., Getz G. S., Locker J., Rabinowitz M., Bolotin-Fukuhara M. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie. 1973;55(6):779–792. doi: 10.1016/s0300-9084(73)80030-6. [DOI] [PubMed] [Google Scholar]
  9. Goldthwaite C. D., Cryer D. R., Marmur J. Effect of carbon source on the replication and transmission of yeast mitochondrial genomes. Mol Gen Genet. 1974;133(2):87–104. doi: 10.1007/BF00264830. [DOI] [PubMed] [Google Scholar]
  10. Howell N., Hall R. M., Linnane A. W., Lukins H. B. Genetic analyses of the polarity alleles in recombinants from mitochondrial genetic crosses. J Bacteriol. 1974 Sep;119(3):1063–1065. doi: 10.1128/jb.119.3.1063-1065.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howell N., Trembath M. K., Linnane A. W., Lukins H. B. Biogenesis of mitochondria. 30. An analysis of polarity of mitochondrial gene recombination and transmission. Mol Gen Genet. 1973 Mar 27;122(1):37–51. doi: 10.1007/BF00337972. [DOI] [PubMed] [Google Scholar]
  12. Kuzela S., Grecná E. Lack of amino acid incorporation by isolated mitochondria from respiratory-deficient cytoplasmic yeast mutants. Experientia. 1969;25(7):776–777. doi: 10.1007/BF01897625. [DOI] [PubMed] [Google Scholar]
  13. Mahler H. R. Biogenetic autonomy of mitochondria. CRC Crit Rev Biochem. 1973 Aug;1(3):381–460. doi: 10.3109/10409237309105439. [DOI] [PubMed] [Google Scholar]
  14. Mehrotra B. D., Mahler H. R. Characterization of some unusual DNAs from the mitochondria from certain "petite" strains of Saccharomyces cerevisiae. Arch Biochem Biophys. 1968 Dec;128(3):685–703. doi: 10.1016/0003-9861(68)90078-7. [DOI] [PubMed] [Google Scholar]
  15. Mounolou J. C., Jakob H., Slonimski P. P. Mitochondrial DNA from yeast "petite" mutants: specific changes in buoyant density corresponding to different cytoplasmic mutations. Biochem Biophys Res Commun. 1966 Jul 20;24(2):218–224. doi: 10.1016/0006-291x(66)90723-6. [DOI] [PubMed] [Google Scholar]
  16. Netter P., Petrochilo E., Slonimski P. P., Bolotin-Fukuhara M., Coen D., Deutsch J., Dujon B. Mitochondrial genetics. VII. Allelism and mapping studies of ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin in S. cerevisiae. Genetics. 1974 Dec;78(4):1063–1100. doi: 10.1093/genetics/78.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roth R., Halvorson H. O. Sporulation of yeast harvested during logarithmic growth. J Bacteriol. 1969 May;98(2):831–832. doi: 10.1128/jb.98.2.831-832.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SHERMAN F., EPHRUSSI B. The relationship between respiratory deficiency and suppressiveness in yeast as determined with segregational mutants. Genetics. 1962 Jun;47:695–700. doi: 10.1093/genetics/47.6.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schatz G., Saltzgaber J. Protein synthesis by yeast promitochondria in vivo. Biochem Biophys Res Commun. 1969 Dec 4;37(6):996–1001. doi: 10.1016/0006-291x(69)90230-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES