Skip to main content
Genetics logoLink to Genetics
. 1976 Aug;83(4):619–632. doi: 10.1093/genetics/83.4.619

Thialysine-Resistant Mutant of SALMONELLA TYPHIMURIUM with a Lesion in the thrA Gene

Victor A Jegede 1, Friederica Spencer 1, Jean E Brenchley 1
PMCID: PMC1213538  PMID: 786777

Abstract

A mutant of Salmonella typhimurium was selected for its spontaneous resistance to the lysine analog, thialysine (S-2-aminoethyl cysteine). This strain, JB585, exhibits a number of pleiotropic properties including a partial growth requirement for threonine, resistance to thiaisoleucine and azaleucine, excretion of lysine and valine, and inhibition of growth by methionine. Genetic studies show that these properties are caused by a single mutation in the thrA gene which encodes the threonine-controlled aspartokinase-homoserine dehydrogenase activities. Enzyme assays demonstrated that the aspartokinase activity is unstable and the threonine-controlled homoserine dehydrogenase activity absent in extracts prepared from the mutant. These results explain the growth inhibition by methionine because the remaining homoserine dehydrogenase isoenzyme would be repressed by methionine, causing a limitation for threonine. The partial growth requirement for threonine during growth in glucose minimal medium may also, by producing an isoleucine limitation, cause derepression of the isoleucine-valine enzymes and provide an explanation for both the valine excretion, and azaleucine and thiaisoleucine resistance. The overproduction of lysine may confer the thialysine resistance.

Full Text

The Full Text of this article is available as a PDF (878.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biswas D. K., Mazumder R., Biswas C. Regulation of aspartate kinase by methionine, threonine, and lysine in Escherichia coli strain B. J Biol Chem. 1968 Jul 10;243(13):3655–3660. [PubMed] [Google Scholar]
  2. Boro H., Brenchley J. E. A new generalized transducing phage for Salmonella typhimurium LT2. Virology. 1971 Sep;45(3):835–836. doi: 10.1016/0042-6822(71)90208-x. [DOI] [PubMed] [Google Scholar]
  3. Boy E., Patte J. C. Multivalent repression of aspartic semialdehyde dehydrogenase in Escherichia coli K-12. J Bacteriol. 1972 Oct;112(1):84–92. doi: 10.1128/jb.112.1.84-92.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenchley J. E. Effect of methionine sulfoximine and methionine sulfone on glutamate synthesis in Klebsiella aerogenes. J Bacteriol. 1973 May;114(2):666–673. doi: 10.1128/jb.114.2.666-673.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cafferata R. L., Freundlich M. Evidence for a methionine-controlled homoserine dehydrogenase in Salmonella typhimurium. J Bacteriol. 1969 Jan;97(1):193–198. doi: 10.1128/jb.97.1.193-198.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chrispeels M. J., Boyd R. F., Williams L. S., Neidhardt F. C. Modification of valyl tRNA synthetase by bacteriophage in Escherichia coli. J Mol Biol. 1968 Feb 14;31(3):463–475. doi: 10.1016/0022-2836(68)90421-x. [DOI] [PubMed] [Google Scholar]
  7. Singer C. E., Smith G. R., Cortese R., Ames B. N. [Mutant tRNA His ineffective in repression and lacking two pseudouridine modifications]. Nat New Biol. 1972 Jul 19;238(81):72–74. doi: 10.1038/newbio238072a0. [DOI] [PubMed] [Google Scholar]
  8. Stuttard C. Location of trpR mutations in the serB-thr region of Salmonella typhimurium. J Bacteriol. 1972 Aug;111(2):368–374. doi: 10.1128/jb.111.2.368-374.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES