Skip to main content
Genetics logoLink to Genetics
. 1976 Aug;83(4):675–686. doi: 10.1093/genetics/83.4.675

Temperature-Sensitive Yeast Mutants Defective in Meiotic Recombination and Replication

Robert Roth 1
PMCID: PMC1213543  PMID: 786782

Abstract

A system is described for isolating temperature-sensitive mutants of Saccharomyces cerevisiae with defects in early meiotic events. We used an otherwise haploid strain disomic (n+1) for chromosome III, and heteroallelic at the leucine-2 locus. Meiotic development was initiated by exposure of the strain to acetate sporulation medium, and monitored by the appearance of leucine-independent intragenic recombinants. Mutant isolation was based on the recovery of thermally induced defects in recombination. The temperature-sensitive characteristic was included to allow eventual characterizations of the temporal period during meiosis when each gene performs its essential function. Following mutagenesis with either ethyl methane sulfonate or nitrosoguanidine individual clones were tested at 34° and 24° for acetate-induced recombination. Starting with 2700 clones, derived from cells that survived mutagenic treatment, we isolated 48 strains with thermally induced lesions in recombination. In the majority of mutants premeiotic replication occurred normally, or nearly normally, at the restrictive temperature, indicating that the meiotic cycle was initiated and that there was a defect in an event required for intragenic recombination. We also detected mutants where the thermally induced lesion in recombination resulted from temperature-sensitive premeiotic DNA synthesis.

Full Text

The Full Text of this article is available as a PDF (701.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Esposito M. S., Esposito R. E. The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics. 1969 Jan;61(1):79–89. doi: 10.1093/genetics/61.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hartwell L. H. Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation. J Mol Biol. 1971 Jul 14;59(1):183–194. doi: 10.1016/0022-2836(71)90420-7. [DOI] [PubMed] [Google Scholar]
  3. Küenzi M. T., Roth R. Timing of mitochondrial DNA synthesis during meiosis in Saccharomyces cerevisiae. Exp Cell Res. 1974 Apr;85(2):377–382. doi: 10.1016/0014-4827(74)90139-6. [DOI] [PubMed] [Google Scholar]
  4. Roth R. Carbohydrate accumulation during the sporulation of yeast. J Bacteriol. 1970 Jan;101(1):53–57. doi: 10.1128/jb.101.1.53-57.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Roth R., Fogel S. A system selective for yeast mutants deficient in meiotic recombination. Mol Gen Genet. 1971;112(4):295–305. doi: 10.1007/BF00334431. [DOI] [PubMed] [Google Scholar]
  6. Roth R., Halvorson H. O. Sporulation of yeast harvested during logarithmic growth. J Bacteriol. 1969 May;98(2):831–832. doi: 10.1128/jb.98.2.831-832.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Roth R., Lusnak K. DNA synthesis during yeast sporulation: genetic control of an early developmental event. Science. 1970 Apr 24;168(3930):493–494. doi: 10.1126/science.168.3930.493. [DOI] [PubMed] [Google Scholar]
  8. Silva-Lopez E., Zamb T. J., Roth R. Role of premeiotic replication in gene conversion. Nature. 1975 Jan 17;253(5488):212–214. doi: 10.1038/253212a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES