Skip to main content
Genetics logoLink to Genetics
. 1976 Aug;83(4):765–782. doi: 10.1093/genetics/83.4.765

Genetic Analysis of the Centromeric Heterochromatin of Chromosome 2 of DROSOPHILA MELANOGASTER: Deficiency Mapping of Ems-Induced Lethal Complementation Groups

Arthur J Hilliker 1
PMCID: PMC1213550  PMID: 823073

Abstract

Until recently, little was known of the genetic constitution of the heterochromatic segments of the major autosomes of Drosophila melanogaster . Our previous report described the genetic dissection of the proximal, heterochromatic region of chromosome 2 of Drosophila melanogaster by means of a series of overlapping deficiencies generated by the detachment of compound second autosomes (Hilliker and Holm 1975). Analysis of these deficiencies by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for the existence of at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. These data in conjunction with cytological observations demonstrated that light and rolled and three loci lying between them are located within the proximal heterochromatin of the second chromosome.——The present report describes the further analysis of this region through the induction with ethyl methanesulphonate (EMS) of recessive lethals allelic to the 2L and 2R proximal deficiencies associated with the detachment products. Analysis of the 118 EMS-induced recessive lethals and visible mutations recovered provided evidence for seven loci in the 2L heterochromatin and six loci in the 2R heterochromatin, with multiple alleles being obtained for most sites. Of these loci, one in 2L and two in 2R fall near the heterochromatic-euchromatic junctions of 2L and 2R respectively. None of the 113 EMS lethals behaved as a deficiency, implying that the heterochromatic loci uncovered in this study represent nonrepetitive cistrons. Thus functional genetic loci are found in heterochromatin, albeit at a very low density relative to euchromatin.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrighi F. E., Hsu T. C., Pathak S., Sawada H. The sex chromosomes of the Chinese hamster: constitutive heterochromatin deficient in repetitive DNA sequences. Cytogenet Cell Genet. 1974;13(3):268–274. doi: 10.1159/000130278. [DOI] [PubMed] [Google Scholar]
  2. Barigozzi C., Dolfini S., Fraccaro M., Raimondi G. R., Tiepolo L. In vitro study of the DNA replication patterns of somatic chromosomes of Drosophila melanogaster. Exp Cell Res. 1966 Aug;43(1):231–234. doi: 10.1016/0014-4827(66)90399-5. [DOI] [PubMed] [Google Scholar]
  3. LEWIS E. B. The phenomenon of position effect. Adv Genet. 1950;3:73–115. doi: 10.1016/s0065-2660(08)60083-8. [DOI] [PubMed] [Google Scholar]
  4. Lefevre G., Jr The relationship between genes and polytene chromosome bands. Annu Rev Genet. 1974;8:51–62. doi: 10.1146/annurev.ge.08.120174.000411. [DOI] [PubMed] [Google Scholar]
  5. MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Peacock W. J., Brutlag D., Goldring E., Appels R., Hinton C. W., Lindsley D. L. The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:405–416. doi: 10.1101/sqb.1974.038.01.043. [DOI] [PubMed] [Google Scholar]
  7. Ritossa F. M., Atwood K. C., Spiegelman S. A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of "ribosomal" DNA. Genetics. 1966 Sep;54(3):819–834. doi: 10.1093/genetics/54.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rudkin G. T. Non replicating DNA in Drosophila. Genetics. 1969;61(1 Suppl):227–238. [PubMed] [Google Scholar]
  9. Schalet A. Exchanges at the bobbed locus of Drosophila melanogaster. Genetics. 1969 Sep;63(1):133–153. doi: 10.1093/genetics/63.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schalet A., Lefevre G., Jr The localization of "ordinary" sex-linked genes in section 20 of the polytene X chromosome of Drosophila melanogaster. Chromosoma. 1973 Nov 21;44(2):183–202. doi: 10.1007/BF00329116. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES