Skip to main content
Genetics logoLink to Genetics
. 1976 Oct;84(2):375–384. doi: 10.1093/genetics/84.2.375

Enzymes and Reproduction in Natural Populations of DROSOPHILA EURONOTUS

Harrison D Stalker 1
PMCID: PMC1213582  PMID: 1001873

Abstract

Populations of Drosophila euronotus, one from southern Louisiana (3 samples), and one from Missouri (2 samples), were classified for allele frequencies at alkaline phosphatase (APH) and acid phosphatase (ACPH) loci. The two populations differed consistently in allele frequencies at both loci. The APH locus is on the inversion-free X chromosome; the chromosomal locus of the autosomal ACPH is unknown, and could involve inversion polymorphism. Wild females from Missouri and Louisiana populations heterozygous at the APH locus carried more sperm at capture than did the corresponding homozygotes. This heterotic association was significant for the combined samples, and whether it was the result of heterosis at the enzyme locus studied, or due to geographically widespread close linkage with other heterotic loci, it should help to maintain heterozygosity at the APH locus. In a Louisiana collection which included large numbers of sperm-free females, simultaneous homozygosity at both enzyme loci was significantly associated with lack of sperm. It is suggested that the latter association is the result of young heterozygous females achieving sexual maturity earlier than do the double homozygotes. The average effective sperm load for 225 wild females was only 29.4, suggesting the necessity for frequent repeat-mating in nature to maintain female fertility. A comparison of the sex-linked APH genotypes of wild females with those of their daughters indicated that among 295 wild-inseminated females from five populations, 35% had mated more than once, and of this 35%, six females had mated at least three times. Because of ascertainment difficulties, it is clear that the true frequency of multiple-mating in nature must have been much higher than the observed 35%. Laboratory studies indicate that multiple-mating in this species does not involve sperm displacement, possibly due to the small number of sperms transmitted per mating, and the fact that the sperm receptacles are only partially filled by a given mating.

Full Text

The Full Text of this article is available as a PDF (681.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. W., Watanabe T. K. Selection by fertility in Drosophila pseudoobscura. Genetics. 1974 Jul;77(3):559–564. doi: 10.1093/genetics/77.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ehrman L. Mating success and genotype frequency in Drosophila. Anim Behav. 1966 Apr-Jul;14(2):332–339. doi: 10.1016/s0003-3472(66)80093-3. [DOI] [PubMed] [Google Scholar]
  3. Kojima K., Gillespie J., Toari Y. N. A profile of Drosophila species' enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes. Biochem Genet. 1970 Oct;4(5):627–637. doi: 10.1007/BF00486100. [DOI] [PubMed] [Google Scholar]
  4. LEFEVRE G., Jr, JONSSON U. B. Sperm transfer, storage, displacement, and utilization in Drosophila melanogaster. Genetics. 1962 Dec;47:1719–1736. doi: 10.1093/genetics/47.12.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Milkmann R., Zeitler R. R. Concurrent multiple paternity in natural and laboratory populations of Drosophila melanogaster. Genetics. 1974 Dec;78(4):1191–1193. doi: 10.1093/genetics/78.4.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES