Skip to main content
Genetics logoLink to Genetics
. 1976 Nov;84(3):639–659. doi: 10.1093/genetics/84.3.639

Testing for Selective Neutrality of Electrophoretically Detectable Protein Polymorphisms

B S Weir 1,2, A H D Brown 1,2, D R Marshall 1,2
PMCID: PMC1213600  PMID: 1001883

Abstract

The statistical assessment of gene-frequency data on protein polymorphisms in natural populations remains a contentious issue. Here we formulate a test of whether polymorphisms detected by electrophoresis are in accordance with the stepwise, or charge-state, model of mutation in finite populations in the absence of selection. First, estimates of the model parameters are derived by minimizing chi-square deviations of the observed frequencies of genotypes with alleles (0,1,2...) units apart from their theoretical expected values. Then the remaining deviation is tested under the null hypothesis of neutrality. The procedure was found to be conservative for false rejections in simulation data. We applied the test to Ayala and Tracey 's data on 27 allozymic loci in six populations of Drosophila willistoni . About one-quarter of polymorphic loci showed significant departure from the neutral theory predictions in virtually all populations. A further quarter showed significant departure in some populations. The remaining data showed an acceptable fit to the charge state model. A predominating mode of selection was selection against alleles associated with extreme electrophoretic mobilities. The advantageous properties and the difficulties of the procedure are discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  2. Wehrhahn C. F. The evolution of selectively similar electrophoretically detectable alleles in finite natural populations. Genetics. 1975 Jun;80(2):375–394. doi: 10.1093/genetics/80.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES