Skip to main content
Genetics logoLink to Genetics
. 1977 May;86(1):5–23. doi: 10.1093/genetics/86.1.5

Multiple Interactions of a DNA-Binding Protein IN VIVO. III. Phage T4 Gene-32 Mutations Differentially Affect Insertion-Type Recombination and Membrane Properties

Gisela Mosig 1, William Berquist 1, Susan Bock 1
PMCID: PMC1213671  PMID: 885343

Abstract

We have investigated the in vivo roles of T4 gene- 32 protein in recombination. We have studied the effects of gene- 32 mutations under conditions that allow normal DNA replication and are permissive for progeny production. Under these conditions, certain gene- 32 mutations specifically reduce insertion-type (short-interval) recombination but none affect crossover-type (long-interval) recombination (see Figure 5). Heterozygote frequencies in all gene-32 mutants are similar to or higher than in a gene-32+ background and are not correlated with recombination deficiencies. "Recombination-deficient" alleles are dominant or codominant over the "recombination-proficient" gene-32 mutation tsL171. This explains apparent discrepancies between a gene-32 map deduced from two-factor crosses and the map derived from three-factor crosses.

We have also found that the "recombination proficient" mutation tsL171 and its homoalleles suppress the characteristic plaque morphology of rII mutants. Under restrictive conditions, tsL171 is partially suppressed by rII mutations, which allow the use of host ligase in recombination.

Our present and previous results are discussed in terms of current recombination models. We conclude that gene-32 protein functions in recombination by forming a complex with DNA, with recombination enzymes and with membrane components. Since gene-32 protein interacts with many components of this recombination complex, gene-32 mutations may differentially affect various recombination steps.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger H. Genetic analysis of T4D phage heterozygotes produced in the presence of 5-fluorodeoxyuridine. Genetics. 1965 Oct;52(4):729–746. doi: 10.1093/genetics/52.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger H., Warren A. J., Fry K. E. Variations in genetic recombination due to amber mutations in T4D bacteriophage. J Virol. 1969 Feb;3(2):171–175. doi: 10.1128/jvi.3.2.171-175.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernstein C., Bernstein H., Mufti S., Strom B. Stimulation of mutation in phage T 4 by lesions in gene 32 and by thymidine imbalance. Mutat Res. 1972 Oct;16(2):113–119. doi: 10.1016/0027-5107(72)90171-6. [DOI] [PubMed] [Google Scholar]
  4. Bernstein H. Repair and recombination in phage T4. I. Genes affecting recombination. Cold Spring Harb Symp Quant Biol. 1968;33:325–331. doi: 10.1101/sqb.1968.033.01.037. [DOI] [PubMed] [Google Scholar]
  5. DOERMANN A. H., BOEHNER L. AN EXPERIMENTAL ANALYSIS OF BACTERIOPHAGE T4 HETEROZYGOTES. I. MOTTLED PLAQUES FROM CROSSES INVOLVING SIX RII LOCI. Virology. 1963 Dec;21:551–567. doi: 10.1016/0042-6822(63)90227-7. [DOI] [PubMed] [Google Scholar]
  6. De Lucia P., Cairns J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1164–1166. doi: 10.1038/2241164a0. [DOI] [PubMed] [Google Scholar]
  7. Doermann A. H. Lysis and Lysis Inhibition with Escherichia coli Bacteriophage. J Bacteriol. 1948 Feb;55(2):257–276. doi: 10.1128/jb.55.2.257-276.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ephrussi-Taylor H. Genetic recombination in DNA-induced transformation of Pneumococcus. IV. The pattern of transmission and phenotypic expression of high and low-efficiency donor sites in the amiA locus. Genetics. 1966 Jul;54(1):211–222. doi: 10.1093/genetics/54.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HERSHEY A. D., BURGI E. Genetic significance of the transfer of nucleic acid from parental to offspring phage. Cold Spring Harb Symp Quant Biol. 1956;21:91–101. doi: 10.1101/sqb.1956.021.01.008. [DOI] [PubMed] [Google Scholar]
  10. Hamlett N. V., Berger H. Mutations altering genetic recombination and repair of DNA in bacteriophage T4. Virology. 1975 Feb;63(2):539–567. doi: 10.1016/0042-6822(75)90326-8. [DOI] [PubMed] [Google Scholar]
  11. Hastings P. J. Some aspects of recombination in eukaryotic organisms. Annu Rev Genet. 1975;9:129–144. doi: 10.1146/annurev.ge.09.120175.001021. [DOI] [PubMed] [Google Scholar]
  12. Henderson D., Weil J. Recombination-deficient deletions in bacteriophage lambda and their interaction with chi mutations. Genetics. 1975 Feb;79(2):143–174. doi: 10.1093/genetics/79.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holloman W. K., Wiegand R., Hoessli C., Radding C. M. Uptake of homologous single-stranded fragments by superhelical DNA: a possible mechanism for initiation of genetic recombination. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2394–2398. doi: 10.1073/pnas.72.6.2394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kozinski A. W., Felgenhauer Z. Z. Molecular recombination in T4 bacteriophage deoxyribonucleic acid. II. Single-strand breaks and exposure of uncomplemented areas as a prerequisite for recombination. J Virol. 1967 Dec;1(6):1193–1202. doi: 10.1128/jvi.1.6.1193-1202.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krisch H. M., Bolle A., Epstein R. H. Regulation of the synthesis of bacteriophage T4 gene 32 protein. J Mol Biol. 1974 Sep 5;88(1):89–104. doi: 10.1016/0022-2836(74)90296-4. [DOI] [PubMed] [Google Scholar]
  16. Maynard-Smith S., Symonds N. Involvement of bacteriophage T4 genes in radiation repair. J Mol Biol. 1973 Feb 15;74(1):33–44. doi: 10.1016/0022-2836(73)90352-5. [DOI] [PubMed] [Google Scholar]
  17. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller R. C., Jr Replication and molecular recombination of T-phage. Annu Rev Microbiol. 1975;29:355–376. doi: 10.1146/annurev.mi.29.100175.002035. [DOI] [PubMed] [Google Scholar]
  19. Mosig G., Bock S. Gene 32 protein of bacteriophage T4 moderates the activities of the T4 gene 46/47-controlled nuclease and of the Escherichia coli RecBC nuclease in vivo. J Virol. 1976 Mar;17(3):756–761. doi: 10.1128/jvi.17.3.756-761.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mufti S., Bernstein H. The DNA-delay mutants of bacteriophage T4. J Virol. 1974 Oct;14(4):860–871. doi: 10.1128/jvi.14.4.860-871.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peterson R. F., Kievitt K. D., Ennis H. L. Membrane protein synthesis after infection of Escherichia coli B with phage T4: the rIIB protein. Virology. 1972 Nov;50(2):520–527. doi: 10.1016/0042-6822(72)90403-5. [DOI] [PubMed] [Google Scholar]
  22. Radding C. M. Molecular mechanisms in genetic recombination. Annu Rev Genet. 1973;7:87–111. doi: 10.1146/annurev.ge.07.120173.000511. [DOI] [PubMed] [Google Scholar]
  23. Ronen A., Salts Y. Genetic distances separating adjacent base pairs in bacteriophage T4. Virology. 1971 Aug;45(2):496–502. doi: 10.1016/0042-6822(71)90349-7. [DOI] [PubMed] [Google Scholar]
  24. Stadler D. R. The mechanism of intragenic recombination. Annu Rev Genet. 1973;7:113–127. doi: 10.1146/annurev.ge.07.120173.000553. [DOI] [PubMed] [Google Scholar]
  25. Vetter D., Sadowski P. D. Point mutants in the D2a region of bacteriophage T4 fail to induce T4 endonuclease IV. J Virol. 1974 Aug;14(2):207–213. doi: 10.1128/jvi.14.2.207-213.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES