Skip to main content
Genetics logoLink to Genetics
. 1977 May;86(1):57–72. doi: 10.1093/genetics/86.1.57

Effects of the Mitotic Cell-Cycle Mutation cdc4 on Yeast Meiosis

G Simchen 1, J Hirschberg 1
PMCID: PMC1213672  PMID: 328339

Abstract

The mitotic cell-cycle mutation cdc4 has been reported to block the initiation of nuclear DNA replication and the separation of spindle plaques after their replication. Meiosis in cdc4/cdc4 diploids is normal at the permissive temperature (25°) and is arrested at the first division (one-nucleus stage) at the restrictive temperature (34° or 36°). Arrested cells at 34° show a high degree of commitment to recombination (at least 50% of the controls) but no haploidization, while cells arrested at 36° are not committed to recombination. Meiotic cells arrested at 34° show a delayed and reduced synthesis of DNA (at most 40% of the control), at least half of which is probably mitochondrial. It is suggested that recombination commitment does not depend on the completion of nuclear premeiotic DNA replication in sporulation medium.—Transfer of cdc4/cdc4 cells to the restrictive temperature at the onset of sporulation produces a uniform phenotype of arrest at a 1-nucleus morphology. On the other hand, shifts of the meiotic cells to the restrictive temperature at later times produce two additional phenotypes of arrest, thus suggesting that the function of cdc4 is required at several points in meiosis (at least at three different times).

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byers B., Goetsch L. Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5056–5060. doi: 10.1073/pnas.72.12.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hartwell L. H., Culotti J., Pringle J. R., Reid B. J. Genetic control of the cell division cycle in yeast. Science. 1974 Jan 11;183(4120):46–51. doi: 10.1126/science.183.4120.46. [DOI] [PubMed] [Google Scholar]
  3. Hartwell L. H., Culotti J., Reid B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci U S A. 1970 Jun;66(2):352–359. doi: 10.1073/pnas.66.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hartwell L. H., Mortimer R. K., Culotti J., Culotti M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973 Jun;74(2):267–286. doi: 10.1093/genetics/74.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Moens P. B., Rapport E. Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol. 1971 Aug;50(2):344–361. doi: 10.1083/jcb.50.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Newlon C. S., Fangman W. L. Mitochondrial DNA synthesis in cell cycle mutants of Saccharomyces cerevisiae. Cell. 1975 Aug;5(4):423–428. doi: 10.1016/0092-8674(75)90061-6. [DOI] [PubMed] [Google Scholar]
  7. Petes T. D., Newlon C. S. Structure of DNA in DNA replication mutants of yeast. Nature. 1974 Oct 18;251(5476):637–639. doi: 10.1038/251637a0. [DOI] [PubMed] [Google Scholar]
  8. Piñon R., Salts Y., Simchen G. Nuclear and mitochondrial DNA synthesis during yeast sporulation. Exp Cell Res. 1974 Feb;83(2):231–238. doi: 10.1016/0014-4827(74)90334-6. [DOI] [PubMed] [Google Scholar]
  9. Robinow C. F., Marak J. A fiber apparatus in the nucleus of the yeast cell. J Cell Biol. 1966 Apr;29(1):129–151. doi: 10.1083/jcb.29.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Roth R. Chromosome replication during meiosis: identification of gene functions required for premeiotic DNA synthesis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3087–3091. doi: 10.1073/pnas.70.11.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Roth R., Fogel S. A system selective for yeast mutants deficient in meiotic recombination. Mol Gen Genet. 1971;112(4):295–305. doi: 10.1007/BF00334431. [DOI] [PubMed] [Google Scholar]
  12. Salts Y., Simchen G., Piñon R. DNA Degradation and reduced recombination following UV irradiation during meiosis in yeast (Saccharomyces cerevisiae). Mol Gen Genet. 1976 Jul 5;146(1):55–59. doi: 10.1007/BF00267983. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES