Skip to main content
Genetics logoLink to Genetics
. 1977 Sep;87(1):19–32. doi: 10.1093/genetics/87.1.19

Genetic Evidence of Unusual Meiosis in the Dinoflagellate CRYPTHECODINIUM COHNII

C A Beam 1, M Himes 1, J Himelfarb 1, C Link 1, K Shaw 1
PMCID: PMC1213726  PMID: 17248757

Abstract

Genetic analysis of the homothallic dinoflagellate, Crypthecodinium cohnii, using 16 nonallelic motility mutants, revealed (1) virtual absence of second division segregation and (2) independent assortment of all genes except for: (a) three cases of cross specific, "false" linkage and (b) one possible case of linkage with a high percentage of crossing over. The probability that at least two of the 16 genes studied are on one of the approximately 50 (minimal) chromosomes is extremely high and, since recombination is observed between all pairs of markers, it is highly probable that some results from crossing over. This likelihood plus the observed absence of second division segregation and the significant number of two-celled zygotic cysts support the view that the "meiosis" of C. cohnii is a one-division process.

Full Text

The Full Text of this article is available as a PDF (878.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. R., Roberts M., Loeblich A. R., 3rd, Klotz L. C. Characterization of the DNA from the dinoflagellate Crypthecodinium cohnii and implications for nuclear organization. Cell. 1975 Oct;6(2):161–169. doi: 10.1016/0092-8674(75)90006-9. [DOI] [PubMed] [Google Scholar]
  2. Himes M., Beam C. A. Genetic analysis in the dinoflagellate (Crypthecodinium (Gyrodinium) cohnii: evidence for unusual meiosis. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4546–4549. doi: 10.1073/pnas.72.11.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kubai D. F., Ris H. Division in the dinoflagellate Gyrodinium cohnii (Schiller). A new type of nuclear reproduction. J Cell Biol. 1969 Feb;40(2):508–528. doi: 10.1083/jcb.40.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. PROVASOLI L., GOLD K. Nutrition of the American strain of Gyrodinium cohnii. Arch Mikrobiol. 1962;42:196–203. doi: 10.1007/BF00408175. [DOI] [PubMed] [Google Scholar]
  5. Rizzo P. J., Noodén L. D. Partial characterization of dinoflagellate chromosomal proteins. Biochim Biophys Acta. 1974 May 31;349(3):415–427. doi: 10.1016/0005-2787(74)90127-0. [DOI] [PubMed] [Google Scholar]
  6. Roberts T. M., Tuttle R. C., Allen J. R., Loeblich A. R., 3rd, Klotz L. C. New genetic and physicochemical data on structure of dinoflagellate chromosomes. Nature. 1974 Mar 29;248(447):446–447. doi: 10.1038/248446a0. [DOI] [PubMed] [Google Scholar]
  7. Roman H, Phillips M M, Sands S M. Studies of Polyploid Saccharomyces. I. Tetraploid Segregation. Genetics. 1955 Jul;40(4):546–561. doi: 10.1093/genetics/40.4.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wright D. A., Moyer F. H. Inheritance of frog lactate dehydrogenase patterns and the persistence of maternal isozymes during development. J Exp Zool. 1968 Feb;167(2):197–205. doi: 10.1002/jez.1401670208. [DOI] [PubMed] [Google Scholar]
  9. Yamazaki T., Ohara Y., Oshima Y. Rare occurrence of the tetratype tetrads in Saccharomycodes ludwigii. J Bacteriol. 1976 Feb;125(2):461–466. doi: 10.1128/jb.125.2.461-466.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES