Abstract
X chromosomes mutagenized with EMS were tested for their effects on the fitness of hemizygous carriers. The tests were carried out in populations in which treated and untreated X chromosomes segregated from matings between males and attached-X females; the populations were maintained for several generations, during which time changes in the frequencies of the treated and untreated chromosomes were observed. From the rates at which the frequencies changed, the fitness effects of the treated chromosomes were determined. It was found that flies hemizygous for a mutagenized chromosome were 1.7% less fit per mm EMS treatment than those hemizygous for an untreated chromosome. Since the same flies were only 0.5% per m m less viable than their untreated counterparts, the total fitness effect of an X chromosome carrying EMS-induced mutants is three to four times greater than its viability effect. By comparing the heterozygous effect of a mutagenized X chromosome on fitness with the corresponding hemizygous effect, the dominance value for the chromosome is estimated to be about 0.25.
Full Text
The Full Text of this article is available as a PDF (535.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Knight G R, Robertson A. Fitness as a Measurable Character in Drosophila. Genetics. 1957 Jul;42(4):524–530. doi: 10.1093/genetics/42.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sved J. A. An estimate of heterosis in Drosophila melanogaster. Genet Res. 1971 Aug;18(1):97–105. doi: 10.1017/s0016672300012453. [DOI] [PubMed] [Google Scholar]