Skip to main content
Genetics logoLink to Genetics
. 1978 Aug;89(4):667–684. doi: 10.1093/genetics/89.4.667

Tetraploid Strains of SACCHAROMYCES CEREVISIAE That Are Trisomic for Chromosome III

Michael I Riley 1, T R Manney 1
PMCID: PMC1213859  PMID: 17248846

Abstract

Meiotic segregation of several genes has been studied in tetraploid strains that are trisomic for chromosome III. The segregation data were compared to a computer simulation that assumes trivalent pairing of homologues involved in exchanges, followed by nonpreferential segregation. Trivalent pairing was characterized by higher frequencies of exchange as compared to bivalent pairing, and by the presence of spores resulting from at least double crossovers involving all three homologues. Trivalent segregation was characterized by a unique recombinant class. The strong interference normally exhibited in diploid meiotic recombination was not evident from the frequency of double crossovers in these strains.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Culbertson M. R., Henry S. A. Genetic analysis of hybrid strains trisomic for the chromosome containing a fatty acid synthetase gene complex (fas1) in yeast. Genetics. 1973 Nov;75(3):441–458. doi: 10.1093/genetics/75.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HURST D. D., FOGEL S. MITOTIC RECOMBINATION AND HETEROALLELIC REPAIR IN SACCHAROMYCES CEREVISIAE. Genetics. 1964 Sep;50:435–458. doi: 10.1093/genetics/50.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hawthorne D C, Mortimer R K. Chromosome Mapping in Saccharomyces: Centromere-Linked Genes. Genetics. 1960 Aug;45(8):1085–1110. doi: 10.1093/genetics/45.8.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. James A P, Lee-Whiting B. Radiation-Induced Genetic Segregations in Vegetative Cells of Diploid Yeast. Genetics. 1955 Nov;40(6):826–831. doi: 10.1093/genetics/40.6.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mackay V., Manney T. R. Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of nonmating mutants. Genetics. 1974 Feb;76(2):255–271. doi: 10.1093/genetics/76.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nakai S., Mortimer R. Induction of different classes of genetic effects in yeast using heavy ions. Radiat Res Suppl. 1967;7:172–181. [PubMed] [Google Scholar]
  7. Pomper S., Burkholder P. R. Studies on the Biochemical Genetics of Yeast. Proc Natl Acad Sci U S A. 1949 Aug;35(8):456–464. doi: 10.1073/pnas.35.8.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Redfield H. Crossing over in the Third Chromosomes of Triploids of DROSOPHILA MELANOGASTER. Genetics. 1930 May;15(3):205–252. doi: 10.1093/genetics/15.3.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shaffer B., Brearley I., Littlewood R., Fink G. R. A stable aneuploid of Saccharomyces cerevisiae. Genetics. 1971 Apr;67(4):483–495. doi: 10.1093/genetics/67.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES