Skip to main content
Genetics logoLink to Genetics
. 1978 Nov;90(3):427–461. doi: 10.1093/genetics/90.3.427

Properties of the Translocatable Tetracycline-Resistance Element Tn10 in ESCHERICHIA COLI and Bacteriophage Lambda

Nancy Kleckner, David F Barker, Donald G Ross, David Botstein
PMCID: PMC1213899  PMID: 365678

Abstract

A number of independent insertions into bacteriophage λ of the translocatable tetracycline-resistance element Tn10 have been isolated and characterized.—The physical positions and relative orientations of several such insertions were determined. Two independent insertions appear to lie in the same orientation at or very near the same site in the cI gene, and two more lie in opposite orientations at or near the same position in or near the rex gene.—Insertions in or near genes cI, rex, and cIII have been characterized genetically for their effects on expression of nearby genes. Tn10 appears to exert a polar effect on expression of distal genes when it is inserted within an operon, even when expression of that operon is under the influence of λ N-function. In addition, Tn10 insertions in rex appear to influence in some way expression of an "upstream" gene, cI.—Lambda derivatives carrying Tn10 give rise to spontaneously occurring, tetracycline-sensitive deletions at high frequencies. It is likely that formation of these deletions is promoted in some way by the Tn10 element.—Lambda::Tn10 phages carrying a Tn10 element that has undergone several successive cycles of translocation since its first isolation and characterization have been analyzed. The results confirm that Tn10 often retains its physical and functional integrity during many cycles of translocation.—Lambda derivatives carrying Tn10 have been used to generate insertions of Tn10 in the chromosome of Escherichia coli. This process is independent of recA function, and seems to be quite analogous to the translocation of Tn10 in Salmonella typhimurium as studied previously.

Full Text

The Full Text of this article is available as a PDF (6.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S., Gottesman M., De Crombrugghe B. Release of polarity in Escherichia coli by gene N of phage lambda: termination and antitermination of transcription. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2534–2538. doi: 10.1073/pnas.71.6.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen S. L. Genomic exclusion: a rapid means for inducing homozygous diploid lines in Tetrahymena pyriformis, syngen 1. Science. 1967 Feb 3;155(3762):575–577. doi: 10.1126/science.155.3762.575. [DOI] [PubMed] [Google Scholar]
  3. Bleyman L. K., Bruns P. J. Genetics of cycloheximide resistance in Tetrahymena. Genetics. 1977 Oct;87(2):275–284. doi: 10.1093/genetics/87.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broker T. R., Lehman I. R. Branched DNA molecules: intermediates in T4 recombination. J Mol Biol. 1971 Aug 28;60(1):131–149. doi: 10.1016/0022-2836(71)90453-0. [DOI] [PubMed] [Google Scholar]
  5. Bruns P. J., Brussard T. B., Kavka A. B. Isolation of homozygous mutants after induced self-fertilization in Tetrahymena. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3243–3247. doi: 10.1073/pnas.73.9.3243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruns P. J., Sanford Y. M. Mass isolation and fertility testing of temperature-sensitive mutants in Tetrahymena. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3355–3358. doi: 10.1073/pnas.75.7.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byrne B. C., Brussard T. B., Bruns P. J. Induced resistance to 6-methylpurine and cycloheximide in tetrahymena. I. Germ line mutants of T. thermophila. Genetics. 1978 Aug;89(4):695–702. doi: 10.1093/genetics/89.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dabbs E. R., Wittman H. G. A strain of Escherichia coli which gives rise to mutations in a large number of ribosomal proteins. Mol Gen Genet. 1976 Dec 22;149(3):303–309. doi: 10.1007/BF00268532. [DOI] [PubMed] [Google Scholar]
  9. Frankel J., Jenkins L. M., Doerder F. P., Nelsen E. M. Mutations affecting cell division in Tetrahymena pyriformis. I. Selection and genetic analysis. Genetics. 1976 Jul;83(3 PT2):489–506. [PMC free article] [PubMed] [Google Scholar]
  10. Grant P. G., Schindler D., Davies J. E. Mapping of trichodermin resistance in Saccharomyces cerevisiae: a genetic locus for a component of the 60S ribsomal subunit. Genetics. 1976 Aug;83(4):667–673. doi: 10.1093/genetics/83.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henderson D., Weil J. Recombination-deficient deletions in bacteriophage lambda and their interaction with chi mutations. Genetics. 1975 Feb;79(2):143–174. doi: 10.1093/genetics/79.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kleckner N., Chan R. K., Tye B. K., Botstein D. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J Mol Biol. 1975 Oct 5;97(4):561–575. doi: 10.1016/s0022-2836(75)80059-3. [DOI] [PubMed] [Google Scholar]
  13. Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
  14. Kleckner N., Signer E. R. Genetic characterization of plasmid formation by N- mutants of bacteriophage lambda. Virology. 1977 Jun 1;79(1):160–173. doi: 10.1016/0042-6822(77)90342-7. [DOI] [PubMed] [Google Scholar]
  15. Lee C. S., Davis R. W., Davidson N. A physical study by electron microscopy of the terminally reptitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J Mol Biol. 1970 Feb 28;48(1):1–22. doi: 10.1016/0022-2836(70)90215-9. [DOI] [PubMed] [Google Scholar]
  16. McCoy J. W. A Temperature-Sensitive Mutant in TETRAHYMENA PYRIFORMIS, Syngen 1. Genetics. 1973 May;74(1):107–114. doi: 10.1093/genetics/74.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nanney D L, Dubert J M. The Genetics of the H Serotype System in Variety 1 of Tetrahymena Pyriformis. Genetics. 1960 Oct;45(10):1335–1349. doi: 10.1093/genetics/45.10.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nanney D. L., McCoy J. W. Characterization of the species of the Tetrahymena pyriformis complex. Trans Am Microsc Soc. 1976 Oct;95(4):664–682. [PubMed] [Google Scholar]
  19. Phillips R. B. Inheritance of T serotypes in Tetrahymena. Genetics. 1967 Aug;56(4):667–681. doi: 10.1093/genetics/56.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberts C. T., Jr, Orias E. A cycloheximide-resistant mutant of Tetrahymena pyriformis. Exp Cell Res. 1973 Oct;81(2):312–316. doi: 10.1016/0014-4827(73)90520-x. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Air G. M., Barrell B. G., Brown N. L., Coulson A. R., Fiddes C. A., Hutchison C. A., Slocombe P. M., Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977 Feb 24;265(5596):687–695. doi: 10.1038/265687a0. [DOI] [PubMed] [Google Scholar]
  22. Signer E. R. Plasmid formation: a new mode of lysogeny by phase lambda. Nature. 1969 Jul 12;223(5202):158–160. doi: 10.1038/223158a0. [DOI] [PubMed] [Google Scholar]
  23. Sutton C. A., Ares M., Jr, Hallberg R. L. Cycloheximide resistance can be mediated through either ribosomal subunit. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3158–3162. doi: 10.1073/pnas.75.7.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tye B. K., Chan R. K., Botstein D. Packaging of an oversize transducing genome by Salmonella phage P22. J Mol Biol. 1974 Jan 5;85(4):485–500. doi: 10.1016/0022-2836(74)90311-8. [DOI] [PubMed] [Google Scholar]
  25. Wang J. C., Davidson N. Cyclization of phage DNAs. Cold Spring Harb Symp Quant Biol. 1968;33:409–415. doi: 10.1101/sqb.1968.033.01.047. [DOI] [PubMed] [Google Scholar]
  26. Watanabe T., Ogata Y., Chan R. K., Botstein D. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. I. Transduction of R factor 222 by phage P22. Virology. 1972 Dec;50(3):874–882. doi: 10.1016/0042-6822(72)90441-2. [DOI] [PubMed] [Google Scholar]
  27. Weindruch R. H., Doerder F. P. Age-dependent micronuclear deterioration in Tetrahymena pyriformis, syngen 1. Mech Ageing Dev. 1975 May-Aug;4(3-4):263–279. doi: 10.1016/0047-6374(75)90028-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES