Skip to main content
Genetics logoLink to Genetics
. 1978 Nov;90(3):531–578. doi: 10.1093/genetics/90.3.531

The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

Bruce S Baker 1, Adelaide T C Carpenter 1, P Ripoll 1
PMCID: PMC1213905  PMID: 17248870

Abstract

To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts are in a nondividing (G2) state.—Mitotic recombination is at or above control levels in the presence of each of the recombination-defective meiotic mutants examined, suggesting that meiotic and mitotic recombination are under separate genetic control in Drosophila.—Of the six mutants examined that are defective in processes required for regular meiotic chromosome segregation, four (l(1)TW-6cs, cand, mei-S332, ord) affect mitotic chromosome behavior. At semi-restrictive temperatures, the cold sensitive lethal l(1)TW-6cs causes very frequent somatic spots, a substantial proportion of which are attributable to nondisjunction or loss. Thus, this locus specifies a function essential for chromosome segregation at mitosis as well as at the first meiotic division in females. The patterns of mitotic effects caused by cand, mei-S332, and ord suggest that they may be leaky alleles at essential loci that specify functions common to meiosis and mitosis. Mutants at the two remaining loci (nod, pal) do not affect mitotic chromosome stability.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S. Paternal loss (pal): a meiotic mutant in Drosophila melanogaster causing loss of paternal chromosomes. Genetics. 1975 Jun;80(2):267–296. doi: 10.1093/genetics/80.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyd J. B., Golino M. D., Setlow R. B. The mei-9 alpha mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics. 1976 Nov;84(3):527–544. doi: 10.1093/genetics/84.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyd J. B., Presley J. M. Repair replication and photorepair of DNA in larvae of Drosophila melanogaster. Genetics. 1974 Aug;77(4):687–700. doi: 10.1093/genetics/77.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyd J. B., Setlow R. B. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster. Genetics. 1976 Nov;84(3):507–526. doi: 10.1093/genetics/84.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brendel M., Haynes R. H. Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Mol Gen Genet. 1973 Sep 12;125(3):197–216. doi: 10.1007/BF00270743. [DOI] [PubMed] [Google Scholar]
  7. Bryant P. J. Cell lineage relationships in the imaginal wing disc of Drosophila melanogaster. Dev Biol. 1970 Jul;22(3):389–411. doi: 10.1016/0012-1606(70)90160-0. [DOI] [PubMed] [Google Scholar]
  8. Carpenter A. T. A meiotic mutant defective in distributive disjunction in Drosophila melanogaster. Genetics. 1973 Mar;73(3):393–428. doi: 10.1093/genetics/73.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carpenter A. T., Sandler L. On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics. 1974 Mar;76(3):453–475. doi: 10.1093/genetics/76.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Catcheside D. G., Angel T. A histidine-3 mutant, in Neurospora crassa, due to an interchange. Aust J Biol Sci. 1974 Apr;27(2):219–229. doi: 10.1071/bi9740219. [DOI] [PubMed] [Google Scholar]
  11. Chaganti R. S., Schonberg S., German J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4508–4512. doi: 10.1073/pnas.71.11.4508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
  13. Davis B. K. Genetic analysis of a meiotic mutant resulting in precocious sister-centromere separation in Drosophila melanogaster. Mol Gen Genet. 1971;113(3):251–272. doi: 10.1007/BF00339546. [DOI] [PubMed] [Google Scholar]
  14. Davis D. G. Chromosome Behavior under the Influence of Claret-Nondisjunctional in DROSOPHILA MELANOGASTER. Genetics. 1969 Mar;61(3):577–594. doi: 10.1093/genetics/61.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ferrus A. Parameters of mitotic recombination in minute mutants of Drosophila melanogaster. Genetics. 1975 Apr;79(4):589–599. doi: 10.1093/genetics/79.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garcia-Bellido A., Merriam J. R. Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev Biol. 1971 Jan;24(1):61–87. doi: 10.1016/0012-1606(71)90047-9. [DOI] [PubMed] [Google Scholar]
  17. García-Bellido A. Some parameters of mitotic recombination in Drosophila melanogaster. Mol Gen Genet. 1972;115(1):54–72. doi: 10.1007/BF00272218. [DOI] [PubMed] [Google Scholar]
  18. Guerra M., Postlethwait J. H., Schneiderman H. A. The development of the imaginal abdomen of Drosophila melanogaster. Dev Biol. 1973 Jun;32(2):361–372. doi: 10.1016/0012-1606(73)90247-9. [DOI] [PubMed] [Google Scholar]
  19. Hall J. C. Chromosome segregation influenced by two alleles of the meiotic mutant c(3)G in Drosophila melanogaster. Genetics. 1972 Jul;71(3):367–400. doi: 10.1093/genetics/71.3.367. [DOI] [PubMed] [Google Scholar]
  20. Hastings P. J., Quah S. K., von Borstel R. C. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA. Nature. 1976 Dec 23;264(5588):719–722. doi: 10.1038/264719a0. [DOI] [PubMed] [Google Scholar]
  21. Hinton C. W. Enhancement of recombination associated with the c3G mutant of Drosophila melanogaster. Genetics. 1966 Jan;53(1):157–164. doi: 10.1093/genetics/53.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaplan W. D. The Influence of Minutes upon Somatic Crossing over in Drosophila Melanogaster. Genetics. 1953 Nov;38(6):630–651. doi: 10.1093/genetics/38.6.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kelly P. T. Non-reciprocal intragenic mitotic recombination in Drosophila melanogaster. Genet Res. 1974 Feb;23(1):1–12. doi: 10.1017/s0016672300014610. [DOI] [PubMed] [Google Scholar]
  24. Kowalski S., Laskowski W. The effect of three rad genes on survival, inter- and intragenic mitotic recombination in Saccharomyces. I. UV irradiation without photoreactivation or liquid-holding post-treatment. Mol Gen Genet. 1975;136(1):75–86. doi: 10.1007/BF00275450. [DOI] [PubMed] [Google Scholar]
  25. Leclerc G. Occurrence of Mitotic Crossing-over Without Meiotic Crossing-over. Science. 1946 May 3;103(2679):553–554. doi: 10.1126/science.103.2679.553. [DOI] [PubMed] [Google Scholar]
  26. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lindsley D. L., Sandler L. The genetic analysis of meiosis in female Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 21;277(955):295–312. doi: 10.1098/rstb.1977.0019. [DOI] [PubMed] [Google Scholar]
  28. Sandler L., Lindsley D. L., Nicoletti B., Trippa G. Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics. 1968 Nov;60(3):525–558. doi: 10.1093/genetics/60.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sandler L. Some observations on the study of the genetic control of meiosis in Drosophila melanogaster. Genetics. 1974 Sep;78(1):289–297. doi: 10.1093/genetics/78.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schroeder A. L. Ultraviolet-sensitive mutants of Neurospora. I. Genetic basis and effect on recombination. Mol Gen Genet. 1970;107(4):291–304. doi: 10.1007/BF00441192. [DOI] [PubMed] [Google Scholar]
  31. Schroeder T. M., Anschütz F., Knopp A. Spontane Chromosomenaberrationen bei familiärer Panmyelopathie. Humangenetik. 1964;1(2):194–196. doi: 10.1007/BF00389636. [DOI] [PubMed] [Google Scholar]
  32. Schultz J. The Minute Reaction in the Development of DROSOPHILA MELANOGASTER. Genetics. 1929 Jul;14(4):366–419. doi: 10.1093/genetics/14.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. de Grouchy J., de Nava C., Marchand J. C., Feingold J., Turleau C. Etudes cytogénétique et biochimique de huit cas d'anémie de Fanconi. Ann Genet. 1972 Mar;15(1):29–40. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES