Abstract
A system of strains and growth media was developed to allow efficient detection of forward mutation, reversion, complementation, and suppression at the canavanine-resistance (CAN1) locus of Saccharomyces cerevisiae. Genetic fine-structure analysis revealed that the map length is at least 40, and possibly as much as 60 X-ray map units; this is the longest gene map yet reported in S. cerevisiae. Allelic complementation was not observed, despite testing of a large number of allele pairs, and alleles suppressible by the ochre suppressor SUP11 were absent from a sample of 48 spontaneous mutants and occurred infrequently (7%) among a sample of ultraviolet-induced mutants. Infrequent mutant types included canavanine-resistant mutants capable of arginine uptake and alleles thought to represent deletions or inversions. In contrast to previous reports in the literature, the spontaneous forward mutation rate at CAN1 did not increase during meiosis.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gocke E., Manney T. R. Expression of radiation-induced mutations at the arginine permease (CAN1) locus in Saccharomyces cerevisiae. Genetics. 1979 Jan;91(1):53–66. doi: 10.1093/genetics/91.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottlieb D. J., von Borstel R. C. Mutators in Saccharomyces cerevisiae: MUT1-1, MUT1-2 and MUT2-1. Genetics. 1976 Aug;83(4):655–666. doi: 10.1093/genetics/83.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol. 1970 Sep;103(3):770–777. doi: 10.1128/jb.103.3.770-777.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawthorne D. C., Leupold U. Suppressors in yeast. Curr Top Microbiol Immunol. 1974;64(0):1–47. doi: 10.1007/978-3-642-65848-8_1. [DOI] [PubMed] [Google Scholar]
- Hawthorne D. C. The selection of nonsense suppressors in yeast. Mutat Res. 1969 Mar-Apr;7(2):187–197. doi: 10.1016/0027-5107(69)90030-x. [DOI] [PubMed] [Google Scholar]
- JOHNSTON J. R., MORTIMER R. K. Use of snail digestive juice in isolation of yeast spore tetrads. J Bacteriol. 1959 Aug;78:292–292. doi: 10.1128/jb.78.2.292-292.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGNI G. E. THE ORIGIN OF SPONTANEOUS MUTATIONS DURING MEIOSIS. Proc Natl Acad Sci U S A. 1963 Nov;50:975–980. doi: 10.1073/pnas.50.5.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGNI G. E., VONBORSTEL R. C., SORA S. MUTAGENIC ACTION DURING MEIOSIS AND ANTIMUTAGENIC ACTION DURING MITOSIS BY 5-AMINOACRIDINE IN YEAST. Mutat Res. 1964 Oct;106:227–230. doi: 10.1016/0027-5107(64)90003-x. [DOI] [PubMed] [Google Scholar]
- MANNEY T. R. ACTION OF A SUPER-SUPPRESSOR IN YEAST IN RELATION TO ALLELIC MAPPING AND COMPLEMENTATION. Genetics. 1964 Jul;50:109–121. doi: 10.1093/genetics/50.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANNEY T. R., MORTIMER R. K. ALLELIC MAPPING IN YEAST BY X-RAY-INDUCED MITOTIC REVERSION. Science. 1964 Feb 7;143(3606):581–583. doi: 10.1126/science.143.3606.581. [DOI] [PubMed] [Google Scholar]
- Magni G E, Von Borstel R C. Different Rates of Spontaneous Mutation during Mitosis and Meiosis in Yeast. Genetics. 1962 Aug;47(8):1097–1108. doi: 10.1093/genetics/47.8.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore C. W., Sherman F. Role of DNA sequences in genetic recombination in the iso-1-cytochrome c gene of yeast. I. Discrepancies between physical distances and genetic distances determined by five mapping procedures. Genetics. 1975 Mar;79(3):397–418. doi: 10.1093/genetics/79.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh A., Sherman F. Genetic and physiological characterization of met15 mutants of Saccharomyces cerevisiae: a selective system for forward and reverse mutations. Genetics. 1975 Sep;81(1):75–97. doi: 10.1093/genetics/81.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]