Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1964 Dec;93(3):449.b4–468. doi: 10.1042/bj0930449

The Second Jubilee Lecture. The origin and function of some methyl groups in branched-chain fatty acids, plant sterols and quinones

Edgar Lederer *
PMCID: PMC1213993  PMID: 5320419

Full text

PDF
449-b4

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARIGONI D. Steric aspects of the biosynthesis of terpenes and steroids. Biochem Soc Symp. 1960;19:32–45. [PubMed] [Google Scholar]
  2. ASANO A., BRODIE A. F., WAGNER A. F., WITTREICH P. E., FOLKERS K. The new synthetic 6-chromanyl phosphate of vitamin K1(20) and its behavior in an enzymatic system from Mycobacterium phlei. J Biol Chem. 1962 Jul;237:2411–2412. [PubMed] [Google Scholar]
  3. BAISTED D. J., CAPSTACK E., Jr, NES W. R. The biosynthesis of beta-amyrin and beta-sitosterol in germinating seeds of Pisum sativum. Biochemistry. 1962 May 25;1:537–541. doi: 10.1021/bi00909a027. [DOI] [PubMed] [Google Scholar]
  4. BIRCH A. J. Biosynthetic relations of some natural phenolic and enolic compounds. Fortschr Chem Org Naturst. 1957;14:186–216. doi: 10.1007/978-3-7091-7164-6_4. [DOI] [PubMed] [Google Scholar]
  5. BLOCH K. The biological synthesis of cholesterol. Vitam Horm. 1957;15:119–150. doi: 10.1016/s0083-6729(08)60509-9. [DOI] [PubMed] [Google Scholar]
  6. BOYER P. D., HULTQUIST D. E., PETER J. B., KREIL G., MITCHELL R. A., DELUCA M., HINKSON J. W., BUTLER L. G., MOYER R. W. ROLE OF THE PHOSPHORYLATED IMIDAZOLE GROUP IN PHOSPHORYLATION AND ENERGY TRANSFER REACTIONS. Fed Proc. 1963 Jul-Aug;22:1080–1087. [PubMed] [Google Scholar]
  7. BRODIE A. F., BALLANTINE J. Oxidative phosphorylation in fractionated bacterial systems. II. The role of vitamin K. J Biol Chem. 1960 Jan;235:226–231. [PubMed] [Google Scholar]
  8. BRODIE A. F., BALLANTINE J. Oxidative phosphorylation in fractionated bacterial systems. III. Specificity of vitamin K reactivation. J Biol Chem. 1960 Jan;235:232–237. [PubMed] [Google Scholar]
  9. BRODIE A. F. Vitamin K and other quinones as coenzymes in oxidative phosphorylation in bacterial systems. Fed Proc. 1961 Dec;20:995–1004. [PubMed] [Google Scholar]
  10. Bennett R. D., Heftmann E., Purcell A. E., Bonner J. Biosynthesis of Stigmasterol in Tomato Fruits. Science. 1961 Sep 8;134(3480):671–672. doi: 10.1126/science.134.3480.671. [DOI] [PubMed] [Google Scholar]
  11. CHMIELEWSKA I. Oxidative and photosynthetic phosphorylation involving 2-methylquinones. Biochim Biophys Acta. 1960 Mar 25;39:170–171. doi: 10.1016/0006-3002(60)90141-4. [DOI] [PubMed] [Google Scholar]
  12. CLARK A. J., BLOCH K. Conversion of ergosterol to 22-de-hydrocholesterol in Blattella germanica. J Biol Chem. 1959 Oct;234:2589–2594. [PubMed] [Google Scholar]
  13. CLAYTON R. B. THE UTILIZATION OF STEROLS BY INSECTS. J Lipid Res. 1964 Jan;5:3–19. [PubMed] [Google Scholar]
  14. CONTESSA A. R., FASSINA G. [Atractyloside as an inhibitor of phosphorylation coupled with oxidation of succinate in plant mitochondria]. Boll Soc Ital Biol Sper. 1963 Mar 31;39:344–346. [PubMed] [Google Scholar]
  15. CRESSON E. L., FOLKERS K., HOFFMAN C. H., MACRAE G. D., SKEGGS H. R., WOLF D. E., WRIGHT L. D. Discovery of a new acetate-replacing factor. J Bacteriol. 1956 Oct;72(4):519–524. doi: 10.1128/jb.72.4.519-524.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Crane F. L. Isolation of Two Quinones with Coenzyme Q Activity from Alfalfa. Plant Physiol. 1959 Sep;34(5):546–551. doi: 10.1104/pp.34.5.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DEMARTEAU-GINSBURG H., LEDERER E. SUR LA STRUCTURE CHIMIQUE DU MYCOSIDE B. Biochim Biophys Acta. 1963 Aug 27;70:442–451. doi: 10.1016/0006-3002(63)90774-1. [DOI] [PubMed] [Google Scholar]
  18. GASTAMBIDE ODIER M., DELAUMENY J. M., LEDERER E. BIOSYNTH'ESE DE L'ACIDE C32-MYCOC'EROSIQUE; INCORPORATION D'ACIDE PROPIONIQUE. Biochim Biophys Acta. 1963 Dec 27;70:670–678. doi: 10.1016/0006-3002(63)90811-4. [DOI] [PubMed] [Google Scholar]
  19. GASTAMBIDE-ODIER M., LEDERER E. [Biosynthesis of corynomycolic acid from 2 molecules of palmitic acid]. Biochem Z. 1960;333:285–295. [PubMed] [Google Scholar]
  20. GILNER D., SRINIVASAN P. R. The biosynthesis of magnamycin, a macrolide antibiotic. Biochem Biophys Res Commun. 1962 Jul 19;8:299–304. doi: 10.1016/0006-291x(62)90282-6. [DOI] [PubMed] [Google Scholar]
  21. GLOVER J., MORTON R. A. The absorption and metabolism of sterols. Br Med Bull. 1958 Sep;14(3):226–233. doi: 10.1093/oxfordjournals.bmb.a069688. [DOI] [PubMed] [Google Scholar]
  22. GRIFFITHS D. E. A NEW PHOSPHORYLATED DERIVATIVE OF NAD, AN INTERMEDIATE IN OXIDATIVE PHOSPHORYLATION. Fed Proc. 1963 Jul-Aug;22:1064–1070. [PubMed] [Google Scholar]
  23. GRUBER W., HOHL R., WIELAND T. Hydroquinone monophosphates and oxidative phosphorylation. Biochem Biophys Res Commun. 1963 Jul 26;12:242–246. doi: 10.1016/0006-291x(63)90197-9. [DOI] [PubMed] [Google Scholar]
  24. HOFMANN K., LIU T. Y. Lactobacillic acid biosynthesis. Biochim Biophys Acta. 1960 Jan 15;37:364–365. doi: 10.1016/0006-3002(60)90252-3. [DOI] [PubMed] [Google Scholar]
  25. HORNING M. G., MARTIN D. B., KARMEN A., VAGELOS P. R. Fatty acid synthesis in adipose tissue. II. Enzymatic synthesis of branched chain and odd-numbered fatty acids. J Biol Chem. 1961 Mar;236:669–672. [PubMed] [Google Scholar]
  26. JAUREGUIBERRY G., LAW J. H., MCCLOSKEY J. A., LEDERER E. SUR LA M'ECANISME BIOCHIMIQUE DE LA C-M'ETHYLATION PAR LA M'ETHIONINE. C R Hebd Seances Acad Sci. 1964 Apr 1;258:3587–3589. [PubMed] [Google Scholar]
  27. JOHNSON D. F., HEFTMANN E., HOUGHLAND G. V. THE BIOSYNTHESIS OF STEROLS IN SOLANUM TUBEROSUM. Arch Biochem Biophys. 1964 Jan;104:102–105. doi: 10.1016/s0003-9861(64)80040-0. [DOI] [PubMed] [Google Scholar]
  28. Johnson D. F., Bennett R. D., Heftmann E. Cholesterol in Higher Plants. Science. 1963 Apr 12;140(3563):198–199. doi: 10.1126/science.140.3563.198. [DOI] [PubMed] [Google Scholar]
  29. KANEDA T., BUTTE J. C., TAUBMAN S. B., CORCORAN J. W. Actinomycete antibiotics. III. The biogenesis of erythronolide, the C-21 branched chain lactone in erythromycin. J Biol Chem. 1962 Feb;237:322–328. [PubMed] [Google Scholar]
  30. KISLIUK R. L. The source of hydrogen for methionine methyl formation. J Biol Chem. 1963 Jan;238:397–400. [PubMed] [Google Scholar]
  31. LEDERER E. Chemistry and biochemistry of some biologically active bacterial lipids. Pure Appl Chem. 1961;2:587–605. doi: 10.1351/pac196102030587. [DOI] [PubMed] [Google Scholar]
  32. LENNARZ W. J., SCHEUERBRANDT G., BLOCH K. The biosynthesis of oleic and 10-methylstearic acids in Mycobacterium phlei. J Biol Chem. 1962 Mar;237:664–671. [PubMed] [Google Scholar]
  33. LENNARZ W. J. The role of isoleucine in the biosynthesis of branched-chain fatty acids by Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1961 Nov 1;6:112–116. doi: 10.1016/0006-291x(61)90395-3. [DOI] [PubMed] [Google Scholar]
  34. NICHOLAS H. J. Biosynthesis of beta-sitosterol and pentacyclic triterpenes of Salvia officinalis. J Biol Chem. 1962 May;237:1476–1480. [PubMed] [Google Scholar]
  35. O'LEARY W. M. Studies of the utilization of C14-labeled octadecenoic acids by Lactobacillus arabinosus. J Bacteriol. 1959 Mar;77(3):367–373. doi: 10.1128/jb.77.3.367-373.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. POHL S., LAW J. H., RYHAGE R. THE PATH OF HYDROGEN IN THE FORMATION OF CYCLOPROPANE FATTY ACIDS. Biochim Biophys Acta. 1963 Oct 22;70:583–585. doi: 10.1016/0006-3002(63)90794-7. [DOI] [PubMed] [Google Scholar]
  37. POPJAK G., CORNFORTH J. W. The biosynthesis of cholesterol. Adv Enzymol Relat Subj Biochem. 1960;22:281–335. doi: 10.1002/9780470122679.ch7. [DOI] [PubMed] [Google Scholar]
  38. RUDNEY H., PARSON W. W. THE CONVERSION OF P-HYDROXYBENZALDEHYDE TO THE BENZOQUINONE RING OF UBIQUINONE IN RHODOSPIRILLUM RUBRUM. J Biol Chem. 1963 Sep;238:3137–3138. [PubMed] [Google Scholar]
  39. RUSSELL P. J., Jr, BRODIE A. F. Oxidative phosphorylation in fractionated bacterial systems. IV. Enzymic formation of reduced intermediates from vitamin K1. Biochim Biophys Acta. 1961 Jun 10;50:76–81. doi: 10.1016/0006-3002(61)91062-9. [DOI] [PubMed] [Google Scholar]
  40. RYHAGE R., STENHAGEN E. Mass spectrometry in lipid research. J Lipid Res. 1960 Oct;1:361–390. [PubMed] [Google Scholar]
  41. SAZ H. J., WEIL A. Pathway of formation of alpha-methylvalerate by Ascaris lumbricoides. J Biol Chem. 1962 Jul;237:2053–2056. [PubMed] [Google Scholar]
  42. SAZ H. J., WEIL A. The mechanism of the formation of alpha-methylbutyrate from carbohydrate by Ascaris lumbricoides muscle. J Biol Chem. 1960 Apr;235:914–918. [PubMed] [Google Scholar]
  43. STOKES W. M., HICKEY F. C., FISH W. A. Sterol metabolism. I. The occurrence of desmosterol (24-dehydrocholesterol) in rat skin and its conversion in vivo to cholesterol. J Biol Chem. 1958 May;232(1):347–359. [PubMed] [Google Scholar]
  44. SWELL L., TROUT E. C., Jr, FIELD H., Jr, TREADWELL C. R. Intestinal metabolism of C14-phytosterols. J Biol Chem. 1959 Sep;234:2286–2289. [PubMed] [Google Scholar]
  45. Schoenheimer R. NEW CONTRIBUTIONS IN STEROL METABOLISM. Science. 1931 Dec 11;74(1928):579–584. doi: 10.1126/science.74.1928.579. [DOI] [PubMed] [Google Scholar]
  46. TANAKA N., UMEZAWA H. Biogenesis of C13-hydroxy acid moiety of variotin. J Antibiot (Tokyo) 1962 Jul;15:189–190. [PubMed] [Google Scholar]
  47. THORNE K. J., KODICEK E. The metabolism of acetate and mevalonic acid by lactob cilli. III. Studies on the unsaponifiable lipids derived from mevalonic acid. Biochim Biophys Acta. 1962 May 21;59:295–306. doi: 10.1016/0006-3002(62)90177-4. [DOI] [PubMed] [Google Scholar]
  48. THORNE K. J., KODICEK E. The metabolism of acetate and mevalonic acid by lactobacilli. I. The effect of acetate and mevalonic acid on growth. Biochim Biophys Acta. 1962 May 21;59:273–279. doi: 10.1016/0006-3002(62)90175-0. [DOI] [PubMed] [Google Scholar]
  49. THORNE K. J., KODICEK E. The metabolism of acetate and mevalonic acid by lactobacilli. II. The incorporation of [14C]acetate and [14C]mevalonic acid into the bacterial lipids. Biochim Biophys Acta. 1962 May 21;59:280–294. doi: 10.1016/0006-3002(62)90176-2. [DOI] [PubMed] [Google Scholar]
  50. THORNE K. J., KODICEK E. The metabolism of acetate and mevalonic acid by lactobacilli. IV. Analysis of the fatty acids by gas-liquid chromatography. Biochim Biophys Acta. 1962 May 21;59:306–312. doi: 10.1016/0006-3002(62)90178-6. [DOI] [PubMed] [Google Scholar]
  51. VIGNAIS P. V., VIGNAIS P. M., STANISLAS E. Action of potassium atractylate on oxidative phosphorylation in mitochondria and in submitochondrial particles. Biochim Biophys Acta. 1962 Jul 2;60:284–300. doi: 10.1016/0006-3002(62)90404-3. [DOI] [PubMed] [Google Scholar]
  52. VILKAS M., LEDERER E. [On the possible mechanism of oxidative phosphorylation]. Experientia. 1962 Dec 15;18:546–548. doi: 10.1007/BF02172167. [DOI] [PubMed] [Google Scholar]
  53. Vignais P. V., Vignais P. M. Effect of ADP on the inhibition of oxidative phosphorylation by potassium atractylate. Biochem Biophys Res Commun. 1964;14:559–564. doi: 10.1016/0006-291x(64)90269-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES