Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BASSHAM J. A., BIRT L. M., HEMS R., LOENING U. E. Determination of the reduced and oxidized pyridine nucleotides in animal tissues. Biochem J. 1959 Nov;73:491–499. doi: 10.1042/bj0730491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BORTZ W. M., LYNEN F. THE INHIBITION OF ACETYL COA CARBOXYLASE BY LONG CHAIN ACYL COA DERIVATIVES. Biochem Z. 1963 Aug 14;337:505–509. [PubMed] [Google Scholar]
- BRADY R. O., GURIN S. Biosynthesis of fatty acids by cell-free or water-soluble enzyme systems. J Biol Chem. 1952 Nov;199(1):421–431. [PubMed] [Google Scholar]
- BURCH H. B., LOWRY O. H., VONDIPPE P. THE STABILITY OF TRIPHOSPHOPYRIDINE NUCLEOTIDE AND ITS REDUCED FORM IN RAT LIVER. J Biol Chem. 1963 Aug;238:2838–2842. [PubMed] [Google Scholar]
- CAIGER P., MORTON R. K., FILSELL O. H., JARRETT I. G. A comparative study of nicotinamide nucleotide coenzymes during growth of the sheep and rat. Biochem J. 1962 Nov;85:351–359. doi: 10.1042/bj0850351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAMPBELL L. A., KRONFELD D. S. Estimation of low concentrations of plasma glucose using glucose oxidase. Am J Vet Res. 1961 May;22:587–589. [PubMed] [Google Scholar]
- GIBSON D. M., HUBBARD D. D. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem Biophys Res Commun. 1960 Nov;3:531–535. doi: 10.1016/0006-291x(60)90169-8. [DOI] [PubMed] [Google Scholar]
- GLOCK G. E., MCLEAN P. A preliminary investigation of the hormonal control of the hexose monophosphate oxidative pathway. Biochem J. 1955 Nov;61(3):390–397. doi: 10.1042/bj0610390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLOCK G. E., MCLEAN P. Effects of hormones on levels of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in liver and diaphragm. Biochem J. 1955 Nov;61(3):397–402. doi: 10.1042/bj0610397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORDON E. E. The rate of generation of reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate in the liver of normal and alloxan diabetic rats. J Biol Chem. 1963 Jun;238:2135–2140. [PubMed] [Google Scholar]
- KORCHAK H. M., MASORO E. J. Changes in the level of the fatty acid synthesizing enzymes during starvation. Biochim Biophys Acta. 1962 Apr 9;58:354–356. doi: 10.1016/0006-3002(62)91022-3. [DOI] [PubMed] [Google Scholar]
- KRONFELD D. S., KLEIBER M. Mammary ketogenesis in the cow. J Appl Physiol. 1959 Nov;14:1033–1035. doi: 10.1152/jappl.1959.14.6.1033. [DOI] [PubMed] [Google Scholar]
- Kronfeld D. S., Raggi F. Nicotinamide coenzyme concentrations in mammary biopsy samples from ketotic cows. Biochem J. 1964 Jan;90(1):219–224. doi: 10.1042/bj0900219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANGDON R. G. The biosynthesis of fatty acids in rat liver. J Biol Chem. 1957 Jun;226(2):615–629. [PubMed] [Google Scholar]
- MASORO E. J., KORCHAK H. M., PORTER E. A study of the lipogenic inhibitory mechanisms induced by fasting. Biochim Biophys Acta. 1962 Apr 23;58:407–416. doi: 10.1016/0006-3002(62)90051-3. [DOI] [PubMed] [Google Scholar]
- MATTHES K. J., ABRAHAM S., CHAIKOFF I. L. Fatty acid synthesis from acetate by normal and diabetic rat liver homogenate fractions. II. Effect of microsomes and oxidation of substrates. J Biol Chem. 1960 Sep;235:2560–2568. [PubMed] [Google Scholar]
- NUMA S., MATSUHASHI M., LYNEN F. [On disorders of fatty acid synthesis in hunger and alloxan diabetes. I. Fatty acid synthesis in the liver of normal and fasting rats]. Biochem Z. 1961;334:203–217. [PubMed] [Google Scholar]
- PORTER J. W., LONG R. W. A study of the role of palmityl coenzyme A in fatty acid synthesis by the pigeon liver system. J Biol Chem. 1958 Jul;233(1):20–25. [PubMed] [Google Scholar]
- SIPERSTEIN M. D., FAGAN V. M. Studies on the relationship between glucose oxidation and intermediary metabolism. II. The role of glucose oxidation in lipogenesis in diabetic rat liver. J Clin Invest. 1958 Aug;37(8):1196–1201. doi: 10.1172/JCI103709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPENCER A. F., LOWENSTEIN J. M. The supply of precursors for the synthesis of fatty acids. J Biol Chem. 1962 Dec;237:3640–3648. [PubMed] [Google Scholar]
- TEPPERMAN J., TEPPERMAN H. M. Effects of antecedent food intake pattern on hepatic lipogenesis. Am J Physiol. 1958 Apr;193(1):55–64. doi: 10.1152/ajplegacy.1958.193.1.55. [DOI] [PubMed] [Google Scholar]
- TUBBS P. K. INHIBITION OF CITRATE FORMATION BY LONG-CHAIN ACYL THIOESTERS OF COENZYME A AS A POSSIBLE CONTROL MECHANISM IN FATTY ACID BIOSYNTHESIS. Biochim Biophys Acta. 1963 Oct 22;70:608–609. doi: 10.1016/0006-3002(63)90804-7. [DOI] [PubMed] [Google Scholar]
- VAGELOS P. R., ALBERTS A. W., MARTIN D. B. Studies on the mechnism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem. 1963 Feb;238:533–540. [PubMed] [Google Scholar]