Abstract
Tetrad analysis of MATa/MATα diploids of Saccharomyces cerevisiae generally yields 2 MATa:2MATα meiotic products. About 1 to 1.8% of the tetrads yield aberrant segregations for this marker. Described here are experiments that determine whether the aberrant meiotic segregations at the mating-type locus are ascribable to gene conversions or to MAT switches, that is, to mating-type interconversions. Diploid strains incapable of switching MATa to MATα, or the converse, nevertheless display changes of MATa to MATα, or the reverse. These events must be attributed to gene conversion. Further, we suggest that MATa and MATα alleles may represent nonhomologous sequences of DNA since they fail to display postmeiotic segregations.
Full Text
The Full Text of this article is available as a PDF (426.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Esposito M. S. Postmeiotic segregation in Saccharomyces. Mol Gen Genet. 1971;111(3):297–299. doi: 10.1007/BF00433113. [DOI] [PubMed] [Google Scholar]
- HAWTHORNE D. C. A DELETION IN YEAST AND ITS BEARING ON THE STRUCTURE OF THE MATING TYPE LOCUS. Genetics. 1963 Dec;48:1727–1729. doi: 10.1093/genetics/48.12.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harashima S., Nogi Y., Oshima Y. The genetic system controlling homothallism in Saccharomyces yeasts. Genetics. 1974 Aug;77(4):639–650. doi: 10.1093/genetics/77.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harashima S., Oshima Y. Mapping of the homothallic genes, HM alpha and HMa, in Saccharomyces yeasts. Genetics. 1976 Nov;84(3):437–451. doi: 10.1093/genetics/84.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]