Skip to main content
Genetics logoLink to Genetics
. 1979 Jul;92(3):833–847. doi: 10.1093/genetics/92.3.833

The Effects of Mutagen-Sensitive Mutants of DROSOPHILA MELANOGASTER in Nonmutagenized Cells

Bruce S Baker 1, David A Smith 1
PMCID: PMC1214040  PMID: 119665

Abstract

The effects of 13 mutagen-sensitive (mus) mutants (representing seven loci) on mitotic chromosome stability in nonmutagenized cells have been examined genetically. To do this, mus-bearing flies heterozygous for the recessive somatic-cell marker, multiple wing hairs (mwh), were examined for increased frequencies of mwh clones in the wing blade. Mutants at the mus-103, mus-104 and mus-106 loci do not affect the frequency of mwh clones, while mus-101, mus-102, mus-105 and mus-109 alleles cause increases in the frequency of mwh clones. These data show that the wild-type alleles of latter four loci specify functions that are required for chromosome stability in nonmutagenized cells. Analysis of the size distribution of mwh clones produced by these mutants suggests that most chromosome instability caused by these mutants is the consequence of chromosome breakage; in the presence of mus-105 and mus-109 alleles a small fraction of the mwh clones are produced by an event (mitotic recombination, mutation, nondisjunction) that produces euploid clones. To inquire whether any of the extant alleles of the mus-101, mus-102, mus-105 and mus-109 loci might be leaky alleles of loci that carry out essential mitotic functions, chromosome stability in females homozygous for alleles of these loci has been compared to that of females carrying one dose of a mutant over a deficiency for that mus locus. These comparisons show that the extant alleles at the mus-101, mus-109 and mus-105 loci are all leaky mutants. It is suggested that all three of these loci may specify essential mitotic functions.

Full Text

The Full Text of this article is available as a PDF (979.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boram W. R., Roman H. Recombination in Saccharomyces cerevisiae: a DNA repair mutation associated with elevated mitotic gene conversion. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2828–2832. doi: 10.1073/pnas.73.8.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hastings P. J., Quah S. K., von Borstel R. C. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA. Nature. 1976 Dec 23;264(5588):719–722. doi: 10.1038/264719a0. [DOI] [PubMed] [Google Scholar]
  5. Jansen G. J. Abnormal frequencies of spontaneous mitotic recombination in uvsB and uvsC mutants of Aspergillus nidulans. Mutat Res. 1970 Jul;10(1):33–41. doi: 10.1016/0027-5107(70)90143-0. [DOI] [PubMed] [Google Scholar]
  6. Latt S. A., Stetten G., Juergens L. A., Buchanan G. R., Gerald P. S. Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi's anemia. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4066–4070. doi: 10.1073/pnas.72.10.4066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Newmeyer D., Schroeder A. L., Galeazzi D. R. An apparent connection between histidine, recombination, and repair in Neurospora. Genetics. 1978 Jun;89(2):271–279. doi: 10.1093/genetics/89.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nguyen T. D., Green M. M., Boyd J. B. Isolation of two X-linked mutants in Drosophila melanogaster which are sensitive to gamma-rays. Mutat Res. 1978 Jan;49(1):139–143. doi: 10.1016/0027-5107(78)90086-6. [DOI] [PubMed] [Google Scholar]
  9. Parag Y., Parag G. Mutations affecting mitotic recombination frequency in haploids and diploids of the filamentous fungus Aspergillus nidulans. Mol Gen Genet. 1975;137(2):109–123. doi: 10.1007/BF00341677. [DOI] [PubMed] [Google Scholar]
  10. Schroeder T. M., Anschütz F., Knopp A. Spontane Chromosomenaberrationen bei familiärer Panmyelopathie. Humangenetik. 1964;1(2):194–196. doi: 10.1007/BF00389636. [DOI] [PubMed] [Google Scholar]
  11. Shanfield B., Käfer E. UV-sensitive mutants increasing mitotic crossing-over in Aspergillus nidulans. Mutat Res. 1969 May-Jun;7(3):485–487. doi: 10.1016/0027-5107(69)90124-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES