Skip to main content
Genetics logoLink to Genetics
. 1980 May;95(1):111–128. doi: 10.1093/genetics/95.1.111

Components of Hybrid Dysgenesis in a Wild Population of DROSOPHILA MELANOGASTER

William R Engels 1, Christine R Preston 1
PMCID: PMC1214210  PMID: 6776005

Abstract

Hybrid dysgenesis is a condition found in certain interstrain hybrids of Drosophila melanogaster caused by the interaction of chromosomal and cytoplasmic factors. Germ-line abnormalities, including sterility, high mutability and male recombination, appear in the affected individuals. There are at least two distinct systems of hybrid dysgenesis. We examined a Wisconsin wild population in two consecutive years to determine the distribution of the chromosomal P factor and the extrachromosomal M cytotype that together cause one kind of hybrid dysgenic sterility. The P factor was found to be very common in the population, with all three major chromosomes being polymorphic for it. This polymorphism was strongly correlated with variability for male recombination elements, suggesting that these two traits are part of the same system of hybrid dysgenesis. There was a slight tendency for the P factor to be lost in lines taken from this population and inbred in the laboratory for many generations. A large-scale search for the M cytotype, which causes susceptibility to the P factor, showed that it is present in the population at only very low frequencies. Further evidence that the population is mostly immune to the action of the P factor was our finding of a general lack of dysgenic sterility in the wild flies themselves. However, we were able to isolate several wild strains that consistently showed the M cytotype. In some cases, the frequency of the M cytotype could be maintained in these lines, but it could not usually be increased by artificial selection. Some possible consequences of hybrid dysgenesis for the evolutionary biology of Drosophila are suggested.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Engels W. R., Preston C. R. Hybrid dysgenesis in Drosophila melanogaster: the biology of female and male sterility. Genetics. 1979 May;92(1):161–174. doi: 10.1093/genetics/92.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Green M. M. Genetic instability in Drosophila melanogaster: De novo induction of putative insertion mutations. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3490–3493. doi: 10.1073/pnas.74.8.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Green M. M., Shepherd S. H. Genetic instability in Drosophila melanogaster: the induction of specific chromosome 2 deletions by MR elements. Genetics. 1979 Jul;92(3):823–832. doi: 10.1093/genetics/92.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kidwell M. G., Novy J. B. Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: Sterility Resulting from Gonadal Dysgenesis in the P-M System. Genetics. 1979 Aug;92(4):1127–1140. doi: 10.1093/genetics/92.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Picard G. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics. 1976 May;83(1):107–123. doi: 10.1093/genetics/83.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sturtevant A H. Genetic Studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. Genetics. 1920 Sep;5(5):488–500. doi: 10.1093/genetics/5.5.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Thompson J. N., Jr, Woodruff R. C. Mutator genes--pacemakers of evolution. Nature. 1978 Jul 27;274(5669):317–321. doi: 10.1038/274317a0. [DOI] [PubMed] [Google Scholar]
  8. Woodruff R. C., Thompson J. N., Jr, Lyman R. F. Intraspecific hybridisation and the release of mutator activity. Nature. 1979 Mar 15;278(5701):277–279. doi: 10.1038/278277a0. [DOI] [PubMed] [Google Scholar]
  9. Yannopoulos G. Studies on the sterility induced by the male recombination factor 31.1 MRF in Drosophila melanogaster. Genet Res. 1978 Nov;32(3):239–247. doi: 10.1017/s0016672300018735. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES