Skip to main content
Genetics logoLink to Genetics
. 1980 Jun;95(2):259–271. doi: 10.1093/genetics/95.2.259

Mating-Type Regulation of Methyl Methanesulfonate Sensitivity in SACCHAROMYCES CEREVISIAE

George P Livi 1, Vivian L Mackay 1
PMCID: PMC1214225  PMID: 17249036

Abstract

Heterozygosity at the mating-type locus (MAT) in Saccharomyces cerevisiae has been shown previously to enhance X-ray survival in diploid cells. We now show that a/α diploids are also more resistant to the radiomimetic agent methyl methanesulfonate (MMS) than are diploids that are homozygous at MAT (i.e., either a/a or α/α). Log-phase a/α cultures exhibit biphasic MMS survival curves, in which the more resistant fraction consists of budded cells (those cells in the S and G2 phases of the cell cycle). Survival curves for log-phase cultures of a/a or α/α diploids have little if any biphasic nature, suggesting that the enhanced S- and G2-phase repair capacity of a/α cells may be associated with heterozygosity at MAT. The survival of cells arrested at the beginning of the S phase with hydroxyurea indicates that MAT-dependent MMS repair is limited to S and G2, whereas MAT-independent repair can occur in G1.

Full Text

The Full Text of this article is available as a PDF (821.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cox B. S., Parry J. M. The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat Res. 1968 Jul-Aug;6(1):37–55. doi: 10.1016/0027-5107(68)90101-2. [DOI] [PubMed] [Google Scholar]
  2. Friis J., Roman H. The effect of the mating-type alleles on intragenic recombination in yeast. Genetics. 1968 May;59(1):33–36. doi: 10.1093/genetics/59.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Game J. C., Mortimer R. K. A genetic study of x-ray sensitive mutants in yeast. Mutat Res. 1974 Sep;24(3):281–292. doi: 10.1016/0027-5107(74)90176-6. [DOI] [PubMed] [Google Scholar]
  4. Game J. C., Zamb T. J., Braun R. J., Resnick M., Roth R. M. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. doi: 10.1093/genetics/94.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gunge N., Nakatomi Y. Genetic Mechanisms of Rare Matings of the Yeast SACCHAROMYCES CEREVISIAE Heterozygous for Mating Type. Genetics. 1972 Jan;70(1):41–58. doi: 10.1093/genetics/70.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartwell L. H. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J Mol Biol. 1976 Jul 15;104(4):803–817. doi: 10.1016/0022-2836(76)90183-2. [DOI] [PubMed] [Google Scholar]
  7. Lindegren C. C., Lindegren G. A New Method for Hybridizing Yeast. Proc Natl Acad Sci U S A. 1943 Oct 15;29(10):306–308. doi: 10.1073/pnas.29.10.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MORTIMER R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat Res. 1958 Sep;9(3):312–326. [PubMed] [Google Scholar]
  9. Mackay V., Manney T. R. Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of nonmating mutants. Genetics. 1974 Feb;76(2):255–271. doi: 10.1093/genetics/76.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nunes de Langguth E., Beam C. A. Repair mechanisms and cell cycle dependent variations in x-ray sensitivity of diploid yeast. Radiat Res. 1973 Feb;53(2):226–234. [PubMed] [Google Scholar]
  11. Prakash L., Prakash S. Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics. 1977 May;86(1):33–55. doi: 10.1093/genetics/86.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prakash S., Prakash L., Burke W., Montelone B. A. Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE. Genetics. 1980 Jan;94(1):31–50. doi: 10.1093/genetics/94.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reiter H., Strauss B., Robbins M., Marone R. Nature of the repair of methyl methanesulfonate-induced damage in Bacillus subtilis. J Bacteriol. 1967 Mar;93(3):1056–1062. doi: 10.1128/jb.93.3.1056-1062.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Resnick M. A., Setlow J. K. Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J Bacteriol. 1972 Mar;109(3):979–986. doi: 10.1128/jb.109.3.979-986.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roman H., Sands S. M. Heterogeneity of Clones of Saccharomyces Derived from Haploid Ascospores. Proc Natl Acad Sci U S A. 1953 Mar;39(3):171–179. doi: 10.1073/pnas.39.3.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roth R., Lusnak K. DNA synthesis during yeast sporulation: genetic control of an early developmental event. Science. 1970 Apr 24;168(3930):493–494. doi: 10.1126/science.168.3930.493. [DOI] [PubMed] [Google Scholar]
  17. Simchen G., Piñon R., Salts Y. Sporulation in Saccharomyces cerevisiae: premeiotic DNA synthesis, readiness and commitment. Exp Cell Res. 1972 Nov;75(1):207–218. doi: 10.1016/0014-4827(72)90538-1. [DOI] [PubMed] [Google Scholar]
  18. Slater M. L. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J Bacteriol. 1973 Jan;113(1):263–270. doi: 10.1128/jb.113.1.263-270.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Strauss B., Coyle M., Robbins M. Alkylation damage and its repair. Cold Spring Harb Symp Quant Biol. 1968;33:277–287. doi: 10.1101/sqb.1968.033.01.032. [DOI] [PubMed] [Google Scholar]
  20. Unrau P., Wheatcroft R., Cox B. S. The excision of pyrimidine dimers from DNA of ultraviolet irradiated yeast. Mol Gen Genet. 1971;113(4):359–362. doi: 10.1007/BF00272336. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES