Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 May 23;81(Pt 6):549–553. doi: 10.1107/S2056989025004463

Crystal engineering of a 1:1 5-fluoro­cytosine–4-hy­droxy­benzaldehyde cocrystal: insights from X-ray crystallography and Hirshfeld analysis

Marimuthu Sangavi a, Marimuthu Mohana b,*, Ray J Butcher c, Colin D McMillen d
Editor: S-L Zhenge
PMCID: PMC12142404  PMID: 40487706

The cocrystal of 5-fluoro­cytosine and 4-hy­droxy­benzaldehyde (1/1), C4H4FN3O·C7H6O2, crystallizes in the monoclinic P21/c space group. The crystal structure features a robust supra­molecular network stabilized by N—H⋯O, N—H⋯N, O—H⋯O, C—H⋯O and C–H⋯F hydrogen bonds, forming diverse ring motifs including R22(8), R44(22), R66(32), and R88(34). Additional C—F⋯π inter­actions contribute to the crystal cohesion. Hirshfeld surface analysis reveals that O⋯H/H⋯O contacts dominate the inter­molecular inter­actions, emphasizing the key role of hydrogen bonding in the crystal packing.

Keywords: cocrystal; supra­molecular network; dimeric motif; tetra­meric motif; Hirshfeld surface analysis,fingerprint plots

Abstract

The 1:1 cocrystal of 5-fluoro­cytosine (5FC) and 4-hy­droxy­benzaldehyde (4HB), C4H4FN3O·C7H6O2 has been synthesized and its structure characterized by single-crystal X-ray diffraction and Hirshfeld surface analysis. The compound crystallizes in the monoclinic P21/c space group. A robust supra­molecular architecture is stabilized by N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯F hydrogen bonds, forming R22(8), R44(22), R66(32), and R88(34) ring motifs. The N—H⋯O and N—H⋯N hydrogen bonds form strong directional inter­actions, contributing to the R22(8) and R88(34) motifs through dimeric and extended ring structures. O—H⋯O inter­actions link 5FC and 4HB mol­ecules, generating an R66(32) ring that enhances the packing. Weaker C—H⋯F bonds help form the R44(22) tetra­meric motif, supporting the overall three-dimensional supra­molecular framework. Additionally, C—F⋯π inter­actions between the fluorine atom and the aromatic ring add further to the crystal cohesion. Hirshfeld surface analysis and two-dimensional fingerprint plots confirm that O⋯H/H⋯O contacts are the most significant, highlighting the central role of hydrogen bonding in the stability and organization of the crystal structure.

1. Chemical context

Cocrystals have gained considerable attention in supra­molecular chemistry for their ability to improve the physical and chemical properties of active pharmaceutical ingredients (APIs) and functional materials without altering the mol­ecular structure of the drug. They are defined as crystalline, single-phase solids composed of two or more distinct mol­ecular and/or ionic compounds, typically in a stoichiometric ratio, which are neither simple salts nor solvates (Aitipamula et al., 2012; Almarsson & Zaworotko, 2004). Cocrystals are stabilized through non-covalent inter­actions such as hydrogen bonding, π–π stacking, halogen bonding, and van der Waals forces. Their design is guided by the principles of crystal engineering, involving the careful selection of suitable coformers and the application of supra­molecular synthons, such as the R22(8) hydrogen-bonded motif (Etter, 1990; Etter et al., 1990; Desiraju, 1995). In the pharmaceutical industry, cocrystallization offers a promising strategy for enhancing the solubility, stability, and bioavailability of poorly soluble drugs. (Alvani & Shayanfar, 2022; Shi et al., 2024). Compared to conventional techniques such as salt formation, micronization, solid dispersion, amorphous forms, and encapsulation, cocrystals offer the advantage of maintaining a stable crystalline structure, which facilitates detailed characterization by X-ray diffraction (Bolla & Nangia, 2016; Bolla et al., 2022).1.

2. Structural commentary

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic P21/c space group with one mol­ecule each of 5-fluoro­cytosine (5FC) and 4-hy­droxy­benzaldehyde (4HB) present in the asymmetric unit. An ellipsoid plot of the compound is shown in Fig. 1. Proton transfer does not occur between the hydroxyl group of benzaldehyde and the pyrimidine ring nitro­gen atom of 5FC. The C—O bond length in the hydroxyl group of the 4HB mol­ecule is 1.3520 (13) Å, with the corresponding inter­nal bond angle [C2A—N1A—C3A = 120.00 (8)°] in agreement with reported literature values (Louis et al., 1982; Mohana et al., 2016, 2023; Sangavi et al., 2024).

Figure 1.

Figure 1

The mol­ecular structure of the title cocrystal with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features and Hirshfeld surface analysis

The primary inter­action motif is formed via N—H⋯O and C—H⋯F hydrogen bonds (Table 1). The N4A amino group and F1A atom of the 5FC mol­ecule inter­act with the O2B and C7B atoms of the 4HB mol­ecule, resulting in an Inline graphic(8) heterodimeric synthon. Heterodimers are further linked through a weak C—H⋯Oiii [symmetry code: (iii) −x + 2, −y + 1, −z + 1] hydrogen bond involving the C4A atom of 5FC and the O1B atom of 4HB. The inter­action leads to the formation of an Inline graphic(22) tetra­meric synthon. The tetra­meric motif is further extended through a homodimeric Inline graphic(8) synthon, formed by N—H⋯Ni [symmetry code: (i) −x, y + Inline graphic, −z + Inline graphic] and N—H⋯Oii [symmetry code: (ii) −x, y − Inline graphic, −z + Inline graphic] hydrogen bonds. These inter­actions involve atoms N1A, N2A, N3A and O1A of the 5-fluoro­cytosine (5FC) mol­ecule. The formation of this homodimeric synthon bridges adjacent tetra­meric units, resulting in a large Inline graphic(34) ring motif. The alternating arrangement of Inline graphic(22) and Inline graphic(34) rings leads to the development of a three-dimensional supra­molecular cage-like architecture. This network is further consolidated by O—H⋯O hydrogen-bonding inter­actions between the O1A atom of the 5FC mol­ecule and the hydroxyl (–OH) group of the 4-hy­droxy­benzaldehyde (4HB) mol­ecule. The hydrogen bonding occurs via an O—H⋯Oiv [symmetry code: (iv) x + 1, −y + Inline graphic, z − Inline graphic] inter­action, forming an Inline graphic(32) ring motif (Fig. 2). This inter­action strengthens the packing and adds complexity to the supra­molecular network. In addition to hydrogen bonding, the crystal structure is further consolidated by weak C—H⋯F and C—F⋯π inter­actions. The C—F⋯π inter­action (Fig. 3) is observed between 5FC mol­ecules [C1ACgv = 3.2676 (9) Å, C1A—F1ACg = 89.41 (6)°, where Cg is the centroid of the 5FC ring; symmetry code: (v) 1 + x, y, z]. The observed angle is consistent with values reported in the literature (Sikorski et al., 2005; Vangala et al., 2002).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1⋯N1Ai 0.88 (1) 2.06 (1) 2.9354 (12) 175 (1)
N3A—H1CC⋯O2B 0.89 (1) 2.10 (1) 2.9848 (13) 170 (1)
N3A—H1A⋯O1Aii 0.90 (1) 2.04 (1) 2.9328 (12) 176 (1)
C4A—H4A⋯O1Biii 0.93 2.48 3.2905 (14) 145
O1B—H1B⋯O1Aiv 0.86 (2) 1.85 (2) 2.6934 (13) 166 (2)
C6B—H6B⋯F1Aiii 0.93 2.56 3.3446 (14) 143
C7B—H7B⋯F1A 0.93 2.51 2.9886 (14) 112

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

Three-dimensional supra­molecular cage-like architecture formed via N—H⋯O, N—H⋯N, O—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds. [Symmetry codes: (i) −x, y + Inline graphic, −z + Inline graphic; (ii) −x, y − Inline graphic, −z + Inline graphic; (iii) −x + 2, −y + 1, −z + 1; (iv) x + 1, −y + Inline graphic, z − Inline graphic.]

Figure 3.

Figure 3

A view of the C—F⋯π inter­action (symmetry operation 1 + x, y, z).

Hirshfeld surface (HS) analysis was performed for the title compound to visualize and qu­antify its inter­molecular inter­actions. Fig. 4 presents the van der Waals inter­actions using a Hirshfeld surface mapped over dnorm (Spackman & Jayatilaka, 2009), generated with Crystal Explorer 21 (Spackman et al., 2021). This analysis reveals significant inter­molecular hydrogen bonds of the types N—H⋯O, N—H⋯N and O—H⋯O inter­actions. In the surface representation, red areas indicate strong hydrogen bonding, blue regions correspond to contacts close to the sum of the van der Waals radii, and white regions represent weaker inter­actions.

Figure 4.

Figure 4

The Hirshfeld surface mapped over dnorm showing the N—H⋯O, N—H⋯N and O—H⋯O inter­actions as dashed gray lines.

To analyze the relative contributions of different inter­molecular inter­actions, two-dimensional fingerprint plots were generated (McKinnon et al., 2007) and these are shown in Fig. 5. These plots indicate that the most prominent contacts are O⋯H/H⋯O (26.6%), followed by H⋯H (25.5%), C⋯H/H⋯C (16.7%), N⋯H/H⋯N (10.0%) and F⋯H/H⋯F (6.2%). The crystallographic analysis reveals a robust supra­molecular network in the title compound, stabilized by hydrogen bonds (N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯F) and C—F⋯π inter­actions, forming a three-dimensional cage-like supra­molecular architecture. Hirshfeld surface analysis highlights prominent O⋯H/H⋯O inter­actions, alongside other significant contacts, contributing to crystal stability. The study demonstrates how non-covalent inter­actions, including hydrogen-bonding and π inter­actions, govern the mol­ecular packing and cohesion, supporting the principles of supra­molecular chemistry in crystal engineering.

Figure 5.

Figure 5

Fingerprint plots showing the total contribution of individual inter­actions and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and F⋯H/H⋯F inter­actions.

4. Database survey

5-Fluoro­cytosine (5FC) is a synthetic anti­mycotic compound, first synthesized in 1957 and widely used as an anti­tumor agent. It is also active against fungal infection (Portalone & Colapietro, 2007; Vermes et al., 2000). It becomes active by deamination of 5FC into 5-fluoro­uracil by the enzyme cytosine deaminase (CD) and inhibits RNA and DNA synthesis (Morschhauser, 2003). The Cambridge Structural Database (CSD, v5.45, June 2024; Groom et al., 2016) reference codes for the monohydrate are BIRMEU, BIRMEU01, BIRMEU02, BIRMEU03, MEBQUG, MEBQIU, MEBQOA and GATMUL (Louis et al., 1982; Portalone & Colapietro, 2006; Hulme & Tocher, 2006; Portalone, 2011), and for the polymorphs: DUKWIQ, DUKWAI and DUKWEM (Tutughamiarso et al., 2009). A wide range of cocrystals has also been documented, such as XOQQUS, MECTUL, MECVEX, MECVIB, MECVOH, MECVUN, MECWAU, MECWEY, MECWOI, MECWUO, MECXEZ, MECXID, MECXOJ, GIFWIF, UJUJAM, and POCWUD (Souza et al., 2019;Tutughamiarso et al., 2012; Tutughamiarso & Egert, 2012; Mohana et al., 2016, 2023; Sangavi et al., 2024). Salts include WEWZAA01, SIJXAM, SIJXIU, SIJXUG, EDATOS, GIFWEB, POCXAK, ZAPFEE and ROLTUJ WEWZAA01, SIJXAM, SIJXIU, SIJXUG, EDATOS, GIFWEB, POCXAK, ZAPFEE and ROLTUJ (Perumalla et al., 2013a,b; Prabakaran et al., 2001; Mohana et al., 2017; Karthikeyan et al., 2014) have been reported in the literature. 4-Hy­droxy­benzaldehydes are potential therapeutic agents for the treatment of human angiostrongyliasis. The crystal structure of 4-hy­droxy­benzaldehyde (Jasinski et al., 2008), as well as its cocrystal (Nowak & Sikorski, 2023) and polymorphic forms (Simões et al., 2013) have also been reported. 5FC contains multiple hydrogen-bond donors and acceptors, including amino and carbonyl groups, and 4-HBA offers hydroxyl and aldehyde functionalities capable of forming hydrogen bonds, along with an aromatic ring that can engage in π–π inter­actions. The present work focuses on the supra­molecular hydrogen bonding inter­actions in the crystal structure of 1:1 cocrystals of 5-fluoro­cytosine-4-hy­droxy­benzaldehyde.

5. Synthesis and crystallization

The title compound was synthesized by mixing a hot ethano­lic solution of 5-fluoro­cytosine with 4-hy­droxy­benzaldehyde in a 1:1 molar ratio. The solution was heated in a water bath at 333 K for 30 minutes and then allowed to cool slowly to room temperature. After a few days, colorless crystals had separated out of the mother liquor.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the N—H, –NH2 and OH groups were located in difference-Fourier maps and refined freely. Other H atoms were placed geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C4H4FN3O·C7H6O2
M r 251.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 297
a, b, c (Å) 4.2126 (1), 9.6687 (1), 26.8628 (5)
β (°) 94.186 (1)
V3) 1091.21 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.07
Crystal size (mm) 0.27 × 0.21 × 0.17
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.782, 0.840
No. of measured, independent and observed [I > 2σ(I)] reflections 19824, 2243, 2127
R int 0.019
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.04
No. of reflections 2243
No. of parameters 180
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.19

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), PLATON (Spek, 2020), Mercury (Macrae et al., 2020), POVRay (Cason, 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004463/oi2017sup1.cif

e-81-00549-sup1.cif (685.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004463/oi2017Isup2.hkl

e-81-00549-Isup2.hkl (180KB, hkl)
e-81-00549-Isup3.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025004463/oi2017Isup3.cml

CCDC reference: 2452037

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Crystal data

C4H4FN3O·C7H6O2 F(000) = 520
Mr = 251.22 Dx = 1.529 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 4.2126 (1) Å Cell parameters from 18043 reflections
b = 9.6687 (1) Å θ = 3.3–76.2°
c = 26.8628 (5) Å µ = 1.07 mm1
β = 94.186 (1)° T = 297 K
V = 1091.21 (3) Å3 Block, colorless
Z = 4 0.27 × 0.21 × 0.17 mm

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 2243 independent reflections
Radiation source: micro-focus sealed X-ray tube 2127 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.019
ω scans θmax = 76.2°, θmin = 3.3°
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2023) h = −3→5
Tmin = 0.782, Tmax = 0.840 k = −12→12
19824 measured reflections l = −33→33

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2241P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2243 reflections Δρmax = 0.20 e Å3
180 parameters Δρmin = −0.19 e Å3
4 restraints Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.0088 (13)

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The data collection, cell refinement, and data reduction were performed using CrysAlisPro (Rigaku OD, 2023). Structure solution was carried out with SHELXT 2014/5 (Sheldrick, 2015a) and refinement was done using SHELXL-2016/6 (Sheldrick, 2015b). Molecular graphics were prepared using PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason 2004).

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1A 0.6004 (2) 0.39753 (7) 0.63425 (3) 0.0557 (2)
O1A −0.1067 (2) 0.40145 (8) 0.79019 (3) 0.0439 (2)
N1A 0.1299 (2) 0.27556 (9) 0.73165 (3) 0.0331 (2)
N2A 0.1501 (2) 0.51932 (9) 0.73260 (3) 0.0344 (2)
H1 0.076 (3) 0.5966 (14) 0.7444 (6) 0.050 (4)*
N3A 0.3795 (3) 0.15570 (10) 0.67141 (4) 0.0401 (3)
H1CC 0.492 (3) 0.1523 (16) 0.6446 (5) 0.049 (4)*
H1A 0.294 (3) 0.0798 (14) 0.6845 (5) 0.045 (4)*
C1A 0.4154 (3) 0.40215 (11) 0.67318 (4) 0.0351 (3)
C2A 0.3072 (2) 0.27452 (11) 0.69223 (4) 0.0313 (2)
C3A 0.0531 (2) 0.39737 (10) 0.75270 (4) 0.0323 (2)
C4A 0.3331 (3) 0.52236 (11) 0.69305 (4) 0.0356 (3)
H4A 0.399417 0.605918 0.680151 0.043*
O1B 1.1638 (2) 0.27251 (10) 0.35919 (3) 0.0520 (3)
H1B 1.074 (4) 0.2080 (18) 0.3414 (7) 0.076 (5)*
O2B 0.6793 (3) 0.13585 (11) 0.57435 (3) 0.0605 (3)
C1B 1.0816 (3) 0.25581 (12) 0.40653 (4) 0.0383 (3)
C2B 0.8831 (3) 0.14938 (12) 0.42006 (4) 0.0421 (3)
H2B 0.798860 0.087622 0.396053 0.050*
C3B 0.8117 (3) 0.13552 (13) 0.46892 (4) 0.0450 (3)
H3B 0.677170 0.064757 0.477749 0.054*
C4B 0.9386 (3) 0.22637 (12) 0.50533 (4) 0.0401 (3)
C5B 1.1361 (3) 0.33238 (13) 0.49140 (4) 0.0440 (3)
H5B 1.222274 0.393527 0.515464 0.053*
C6B 1.2064 (3) 0.34827 (13) 0.44238 (5) 0.0471 (3)
H6B 1.336473 0.420430 0.433386 0.056*
C7B 0.8656 (3) 0.21566 (14) 0.55746 (4) 0.0474 (3)
H7B 0.972343 0.275878 0.579901 0.057*

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1A 0.0776 (5) 0.0414 (4) 0.0534 (5) −0.0025 (3) 0.0416 (4) 0.0020 (3)
O1A 0.0648 (5) 0.0344 (4) 0.0352 (4) 0.0058 (4) 0.0229 (4) 0.0028 (3)
N1A 0.0453 (5) 0.0265 (4) 0.0287 (4) −0.0013 (3) 0.0106 (4) 0.0013 (3)
N2A 0.0456 (5) 0.0250 (4) 0.0338 (5) 0.0007 (3) 0.0103 (4) −0.0009 (3)
N3A 0.0588 (6) 0.0295 (5) 0.0341 (5) −0.0013 (4) 0.0177 (4) −0.0018 (4)
C1A 0.0421 (6) 0.0337 (6) 0.0310 (5) −0.0024 (4) 0.0131 (4) 0.0025 (4)
C2A 0.0383 (5) 0.0296 (5) 0.0265 (5) −0.0006 (4) 0.0053 (4) 0.0009 (4)
C3A 0.0416 (5) 0.0285 (5) 0.0274 (5) 0.0006 (4) 0.0065 (4) 0.0018 (4)
C4A 0.0423 (6) 0.0290 (5) 0.0364 (5) −0.0035 (4) 0.0096 (4) 0.0047 (4)
O1B 0.0734 (6) 0.0513 (5) 0.0327 (4) −0.0134 (4) 0.0137 (4) 0.0001 (4)
O2B 0.0838 (7) 0.0605 (6) 0.0404 (5) 0.0017 (5) 0.0255 (5) 0.0006 (4)
C1B 0.0477 (6) 0.0370 (5) 0.0311 (5) 0.0040 (4) 0.0082 (4) 0.0018 (4)
C2B 0.0536 (7) 0.0389 (6) 0.0343 (6) −0.0031 (5) 0.0075 (5) −0.0055 (4)
C3B 0.0549 (7) 0.0419 (6) 0.0397 (6) −0.0053 (5) 0.0140 (5) −0.0004 (5)
C4B 0.0464 (6) 0.0422 (6) 0.0324 (5) 0.0101 (5) 0.0080 (4) −0.0005 (4)
C5B 0.0528 (7) 0.0425 (6) 0.0367 (6) 0.0017 (5) 0.0026 (5) −0.0072 (5)
C6B 0.0595 (7) 0.0406 (6) 0.0418 (6) −0.0090 (5) 0.0083 (5) −0.0015 (5)
C7B 0.0569 (7) 0.0521 (7) 0.0342 (6) 0.0110 (6) 0.0102 (5) −0.0031 (5)

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Geometric parameters (Å, º)

F1A—C1A 1.3498 (12) O1B—H1B 0.857 (15)
O1A—C3A 1.2521 (13) O2B—C7B 1.2122 (17)
N1A—C2A 1.3397 (13) C1B—C6B 1.3889 (17)
N1A—C3A 1.3558 (13) C1B—C2B 1.3907 (16)
N2A—C4A 1.3578 (14) C2B—C3B 1.3746 (16)
N2A—C3A 1.3715 (13) C2B—H2B 0.9300
N2A—H1 0.877 (13) C3B—C4B 1.3920 (17)
N3A—C2A 1.3231 (14) C3B—H3B 0.9300
N3A—H1CC 0.891 (13) C4B—C5B 1.3887 (18)
N3A—H1A 0.900 (12) C4B—C7B 1.4594 (15)
C1A—C4A 1.3353 (15) C5B—C6B 1.3791 (17)
C1A—C2A 1.4235 (14) C5B—H5B 0.9300
C4A—H4A 0.9300 C6B—H6B 0.9300
O1B—C1B 1.3520 (13) C7B—H7B 0.9300
C2A—N1A—C3A 120.00 (8) O1B—C1B—C2B 122.30 (10)
C4A—N2A—C3A 121.95 (9) C6B—C1B—C2B 119.97 (10)
C4A—N2A—H1 120.1 (10) C3B—C2B—C1B 119.96 (11)
C3A—N2A—H1 117.8 (10) C3B—C2B—H2B 120.0
C2A—N3A—H1CC 121.8 (10) C1B—C2B—H2B 120.0
C2A—N3A—H1A 115.6 (9) C2B—C3B—C4B 120.64 (11)
H1CC—N3A—H1A 122.4 (14) C2B—C3B—H3B 119.7
C4A—C1A—F1A 121.33 (9) C4B—C3B—H3B 119.7
C4A—C1A—C2A 120.77 (10) C5B—C4B—C3B 118.92 (10)
F1A—C1A—C2A 117.90 (9) C5B—C4B—C7B 118.91 (11)
N3A—C2A—N1A 119.97 (9) C3B—C4B—C7B 122.16 (11)
N3A—C2A—C1A 120.74 (9) C6B—C5B—C4B 120.93 (11)
N1A—C2A—C1A 119.29 (9) C6B—C5B—H5B 119.5
O1A—C3A—N1A 121.43 (9) C4B—C5B—H5B 119.5
O1A—C3A—N2A 118.86 (9) C5B—C6B—C1B 119.58 (11)
N1A—C3A—N2A 119.71 (9) C5B—C6B—H6B 120.2
C1A—C4A—N2A 118.21 (9) C1B—C6B—H6B 120.2
C1A—C4A—H4A 120.9 O2B—C7B—C4B 126.30 (12)
N2A—C4A—H4A 120.9 O2B—C7B—H7B 116.9
C1B—O1B—H1B 107.7 (13) C4B—C7B—H7B 116.9
O1B—C1B—C6B 117.73 (11)
C3A—N1A—C2A—N3A −179.36 (10) O1B—C1B—C2B—C3B 178.79 (11)
C3A—N1A—C2A—C1A 0.55 (16) C6B—C1B—C2B—C3B −0.23 (19)
C4A—C1A—C2A—N3A 177.61 (11) C1B—C2B—C3B—C4B −0.64 (19)
F1A—C1A—C2A—N3A −1.78 (16) C2B—C3B—C4B—C5B 0.72 (18)
C4A—C1A—C2A—N1A −2.30 (17) C2B—C3B—C4B—C7B 179.39 (11)
F1A—C1A—C2A—N1A 178.31 (9) C3B—C4B—C5B—C6B 0.07 (18)
C2A—N1A—C3A—O1A −178.50 (10) C7B—C4B—C5B—C6B −178.65 (11)
C2A—N1A—C3A—N2A 1.84 (16) C4B—C5B—C6B—C1B −0.9 (2)
C4A—N2A—C3A—O1A 177.67 (10) O1B—C1B—C6B—C5B −178.06 (11)
C4A—N2A—C3A—N1A −2.66 (16) C2B—C1B—C6B—C5B 1.01 (19)
F1A—C1A—C4A—N2A −179.10 (9) C5B—C4B—C7B—O2B 173.98 (12)
C2A—C1A—C4A—N2A 1.53 (17) C3B—C4B—C7B—O2B −4.7 (2)
C3A—N2A—C4A—C1A 0.92 (17)

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H1···N1Ai 0.88 (1) 2.06 (1) 2.9354 (12) 175 (1)
N3A—H1CC···O2B 0.89 (1) 2.10 (1) 2.9848 (13) 170 (1)
N3A—H1A···O1Aii 0.90 (1) 2.04 (1) 2.9328 (12) 176 (1)
C4A—H4A···O1Biii 0.93 2.48 3.2905 (14) 145
O1B—H1B···O1Aiv 0.86 (2) 1.85 (2) 2.6934 (13) 166 (2)
C6B—H6B···F1Aiii 0.93 2.56 3.3446 (14) 143
C7B—H7B···F1A 0.93 2.51 2.9886 (14) 112

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+2, −y+1, −z+1; (iv) x+1, −y+1/2, z−1/2.

Funding Statement

We thank Howard University and the National Science Foundation Major Research Instrumentation program (NSF DMR-2117502) for financially supporting the acquisition of the Rigaku Synergy single-crystal X-ray diffractometer used in this study.

References

  1. Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des.12, 2147–2152.
  2. Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. [DOI] [PubMed]
  3. Alvani, A. & Shayanfar, A. (2022). Cryst. Growth Des.22, 6323–6337.
  4. Bolla, G. & Nangia, A. (2016). Chem. Commun.52, 8342–8360. [DOI] [PubMed]
  5. Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev.122, 11514–11603. [DOI] [PubMed]
  6. Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pvt Ltd, Victoria, Australia. http://www.povray.org
  7. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl.34, 2311–2327.
  8. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  9. Etter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M. & Panunto, T. W. (1990). J. Am. Chem. Soc.112, 8415–8426.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des.6, 481–487.
  12. Jasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2008). Acta Cryst. E64, o187. [DOI] [PMC free article] [PubMed]
  13. Karthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328–330. [DOI] [PMC free article] [PubMed]
  14. Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun.11, 1059–1064.
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  16. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  17. Mohana, M., Muthiah, P. T., Sanjeewa, L. D. & McMillen, C. D. (2016). Acta Cryst. E72, 552–555. [DOI] [PMC free article] [PubMed]
  18. Mohana, M., Thomas Muthiah, P. & McMillen, C. D. (2017). Acta Cryst. E73, 361–364. [DOI] [PMC free article] [PubMed]
  19. Mohana, M., Thomas Muthiah, P., McMillen, C. D. & Butcher, R. J. (2023). Acta Cryst. C79, 61–67. [DOI] [PubMed]
  20. Morschhäuser, J. (2003). Pharm. Unserer Zeit32, 124–129. [DOI] [PubMed]
  21. Nowak, P. & Sikorski, A. (2023). RSC Adv.13, 20105–20112. [DOI] [PMC free article] [PubMed]
  22. Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des.13, 429–432.
  23. Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm.10, 2462–2466. [DOI] [PubMed]
  24. Portalone, G. (2011). Chem. Cent. J.5, 51. [DOI] [PMC free article] [PubMed]
  25. Portalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049–o1051.
  26. Portalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr.37, 141–145.
  27. Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936. [DOI] [PubMed]
  28. Rigaku OD. (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  29. Sangavi, M., Kumaraguru, N., Butcher, R. J. & McMillen, C. D. (2024). Acta Cryst. C80, 30–36. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  32. Shi, J., Zhang, Y., An, Q., Li, Y. & Liu, L. (2024). J. Solid State Chem.331, 124545.
  33. Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694. [DOI] [PubMed]
  34. Simões, R. G., Bernardes, C. E. S. & da Piedade, M. E. M. (2013). Cryst. Growth Des.13, 2803–2814.
  35. Souza, M. S., Diniz, L. F., Alvarez, N., da Silva, C. C. P. & Ellena, J. (2019). New J. Chem.43, 15924–15934.
  36. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm11, 19–32.
  37. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  38. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  39. Tutughamiarso, M. & Egert, E. (2012). Acta Cryst. B68, 444–452. [DOI] [PubMed]
  40. Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578. [DOI] [PubMed]
  41. Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431–443. [DOI] [PubMed]
  42. Vangala, V. R., Nangia, A. & Lynch, D. E. (2002). Chem. Commun. pp. 1304–1305. [DOI] [PubMed]
  43. Vermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother.46, 171–179. [DOI] [PubMed]
  44. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004463/oi2017sup1.cif

e-81-00549-sup1.cif (685.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004463/oi2017Isup2.hkl

e-81-00549-Isup2.hkl (180KB, hkl)
e-81-00549-Isup3.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025004463/oi2017Isup3.cml

CCDC reference: 2452037

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES