Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 May 20;81(Pt 6):538–542. doi: 10.1107/S2056989025004359

Syntheses and structures of 1-[2,2-di­chloro-1-hy­droxy-3-(4-methyl­phen­yl)-3-oxoprop­yl]urea and 1-[2,2-di­chloro-3-(4-fluoro­phen­yl)-1-hy­droxy-3-oxoprop­yl]urea

Firudin I Guseinov a,b, Tuncer Hökelek c, Ksenia A Afanaseva a,b, Elena V Shuvalova b, Lev M Glukhov b, Aida I Samigullina b, Alebel N Belay d,*
Editor: W T A Harrisone
PMCID: PMC12142406  PMID: 40487691

The title compounds, C10H9Cl2FN2O3, (I), and C11H12Cl2N2O3, (II), are α,α-dihalo-β-diketone urea derivatives, which contain 4-fluoro­phenyl and p-tolyl groups, respectively. The conformation about the CO—CCl2—CO—Nu (O = keto, Cl2 = di­chloro, u = urea) bond is anti in (I) and gauche in (II). In the crystals of both compounds, O—H⋯O hydrogen bonds generate inversion dimers and the dimers are linked into (100) layers by N—H⋯O hydrogen bonds.

Keywords: crystal structure; hydrogen bonds; Hirshfeld surface analysis; α,α-dihalo-β-oxo­aldehydes; urea

Abstract

The title compounds, C10H9Cl2FN2O3, (I), and C11H12Cl2N2O3, (II), are α,α-dihalo-β-diketone urea derivatives, which contain 4-fluoro­phenyl and p-tolyl groups, respectively. The conformation about the CO—CCl2—CO—Nu (O = keto, Cl2 = di­chloro, u = urea) bond is anti in (I) and gauche in (II). In the crystals of both compounds, O—H⋯O hydrogen bonds generate inversion dimers and the dimers are linked into (100) layers by N—H⋯O hydrogen bonds. The Hirshfeld surface analyses of the crystal structures indicate that the most important contributions for the crystal packings are from H⋯O/O⋯H (22.3%), H⋯H (20.9%), H⋯Cl/Cl⋯H (15.6%) and H⋯C/C⋯H (10.3%) for (I) and H⋯H (31.7%), H⋯O/O⋯H (25.1%), H⋯Cl/Cl⋯H (21.1%) and H⋯C/C⋯H (9.5%) for (II).

1. Chemical context

The replacement of hydrogen atoms with halogen atoms at the active methyl­ene group in β-diketones prevents keto–enol tautomerism and impacts on the reactivity of the corresponding α,α-dihalo-β- diketones (e.g., Guseinov et al., 2006). For instance, the reaction of α,α-dihalo-β-oxo­aldehydes and their derivatives with N-nucleophilic reagents lead to hetero- or macrocyclic compounds (Guseinov et al., 2024). This class of compounds can be used in the spectrophotometric determination of metal ions (Aliyev et al., 2020), decoration of the secondary coordination sphere of metal complexes for catalysis (Aliyeva et al., 2024), crystal growth and design (Naghiyev et al., 2023) and heterogenous catalysis (Mahmudov et al., 2022). In fact, the use of N-compounds has many synthetic advantages (Khalilov, 2021), such as easy modification and functionalization (Huseynov et al., 2021), immobilization on solid materials through supra­molecular inter­actions (Mamedov et al., 2006), and crystal engineering (Hajiyeva et al., 2024).1.

Herein, we describe the syntheses and crystal structures of the two title compounds, C10H9Cl2FN2O3 (I) and C11H12Cl2N2O3 (II), which differ in the substituent at the para position of the phenyl group.

2. Structural commentary

In (I) (Fig. 1), the dihedral angle between the C7–C12 phenyl group and the C2/N1/N3/O2 urea moiety is 65.19 (8)°. The key torsion angles for the backbone of the mol­ecule are C7—C6—C5—C4 = −179.65 (13), C6—C5—C4—N3 = −171.20 (12), C4—C5—C6—O6 = 2.95 (19) and C6—C5—C4—O4 = 66.65 (15)°. Atom C4 is a stereogenic centre: in the arbitrarily chosen asymmetric unit it has R configuration, but crystal symmetry generates a racemic mixture. Atoms F1, C6, C5 are displaced by −0.0244 (11), −0.0602 (15) and −0.0879 (15) Å, respectively, from the plane of the phenyl group. The N1—C2—O2, N3—C4—O4, N3—C4—C5, Cl1—C5—Cl2 and C4—C5—C6 bond angles in (I) are enlarged, while the O2—C2—N3 bond angle in (I) is narrowed compared to the corresponding values in (II): these small differences might arise due to steric reasons or ’packing effects’.

Figure 1.

Figure 1

The asymmetric units of compounds (a) (I) and (b) (II) with 50% probability ellipsoids.

In (II) (Fig. 1), the corresponding dihedral angle between the C7–C12 and C2/N1/N3/O2 planes is 62.70 (9)° and the equivalent backbone torsion angles are C7—C6—C5—C4 = 162.65 (14), C6—C5—C4—N3 = −62.41 (16), C4—C5—C6—O6 = −17.42 (19) and C6—C5—C4—O4 = 176.34 (12)°. Thus it may be seen that the conformation of the atoms about the C4—C5 bond is quite different in the two structures. The stereogenic atom C4 in (II) was arbitrarily assigned to have an R configuration, but crystal symmetry generates a racemic mixture.

3. Supra­molecular features

In the crystals of both compounds, O—H⋯O hydrogen bonds (Tables 1 and 2) generate inversion dimers featuring Inline graphic(12) loops. In both structures, N—H⋯O hydrogen bonds link the dimers into (100) layers, although they are not isostuctural. The hydrogen-bond network encloses Inline graphic(14) loops in (I) (Fig. 2a) and Inline graphic(8) and Inline graphic(8) loops in (II) (Fig. 2b).

Table 1. Hydrogen-bond geometry (Å, °) for (I).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.90 (3) 2.06 (3) 2.9488 (19) 172 (2)
N1—H1B⋯O2ii 0.86 (2) 2.48 (2) 3.297 (2) 158 (2)
N3—H3⋯O6iii 0.87 (2) 2.06 (2) 2.9055 (18) 167 (2)
O4—H4⋯O2iv 0.78 (3) 1.91 (3) 2.6596 (16) 161 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.82 (3) 2.27 (3) 3.0261 (19) 153 (2)
N1—H1B⋯O4ii 0.84 (3) 2.14 (3) 2.9798 (18) 177 (2)
N3—H3⋯O2iii 0.81 (3) 2.19 (3) 2.9445 (18) 156 (2)
O4—H4⋯O2iv 0.78 (3) 1.83 (3) 2.5979 (16) 168 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The partial packing diagrams of compounds (a) (I) and (b) (II). Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

For visualizing the inter­molecular inter­actions in the crystals of (I) and (II), Hirshfeld surface (HS) analyses were carried out using Crystal Explorer 17.5 (Spackman et al., 2021). In the HSs plotted over dnorm (Fig. 3a and b), the contact distances equal, shorter and longer with respect to the sum of van der Waals radii are shown by the white, red and blue colours, respectively. According to the two-dimensional fingerprint plots, H⋯O/O⋯H, H⋯H and H⋯Cl/Cl⋯H contacts make the most important contributions to the HSs (Table 3, Figs. 4 and 5), and they have significant differences due to the different numbers and values of the close contacts in (I) and (II).

Figure 3.

Figure 3

Views of the three-dimensional Hirshfeld surfaces of compounds (a) (I) and (b) (II) plotted over dnorm.

Table 3. Comparison of the fingerprint percentages for compounds (I) and (II).

Contacts (I) (II)
H⋯O/O⋯H 22.3 25.1
H⋯H 20.9 31.7
H⋯Cl/Cl⋯H 15.6 21.1
H⋯C/C⋯H 10.3 9.5
H⋯F/F⋯H 8.3
C⋯Cl/Cl⋯C 6.4 2.8
C⋯F/F⋯C 3.1
F⋯Cl/Cl⋯F 2.8
Cl⋯Cl 2.4 1.9
H⋯N/N⋯H 2.4 1.3
C⋯C 1.8 3.0
O⋯O 1.4
F⋯F 0.7
O⋯Cl/Cl⋯O 0.7 0.2
C⋯O/O⋯C 0.6 1.9
N⋯O/O⋯N 0.3 0.1
C⋯N/N⋯C 0.1
N⋯Cl/Cl⋯N 0.1 1.3

Figure 4.

Figure 4

The two-dimensional fingerprint plots for compound (I), showing (a) all inter­actions, and delineated into different contact types (b)–(i). The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Figure 5.

Figure 5

The two-dimensional fingerprint plots for compound (II), showing (a) all inter­actions, and delineated into different contact types (b)–(i). The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Synthesis and crystallization

A solution of 2,2-di­chloro-3-oxo-3-(p-tol­yl)propanal (231 mg) for (I) or 2,2-di­chloro-3-(4-fluoro­phen­yl)-3-oxopropanal (235 mg) for (II) and urea (60 mg) in 15 ml of dry aceto­nitrile was stirred at room temperature for 6 h. The solvent was removed in vacuo, and the remaining white powder was recrystallized from acetone solution and the title compounds were isolated. The reaction scheme is shown in Fig. 6.

Figure 6.

Figure 6

The synthesis of the title compounds.

(I): yield 82%; m.p. 378–380 K. Analysis calculated (%) for C11H12Cl2N2O3: C 45.38, H 4.15, N 9.62; found C 45.36, H 4.11, N 9.60. 1H NMR (300MHz, DMSO-d6): 2.41 (s, CH3), 5.94 (s, 2H, NH2), 6.01–6.08 (d.d, CH), 6.72 (d, OH), 6.85 (d. NH), 7.38 (d. 2H, Ar), 7.95 (d, 2H, Ar). 13C NMR (75 MHz, DMSO-d6): 21.32, 88.03, 104.05, 128.74, 128.91, 133.77, 142.81, 162.72, 186.95.

(II): yield 78%; m.p. 397–398 K. Analysis calculated (%) for C10H9Cl2FN2O3: C 40.70, H 3.07, N 9.49; found C 40.65, H 3.02, N 9.45. 1H NMR (300MHz, DMSO-d6): 5.96 (s, 2H, NH2), 6.03–6.08 (d.d, CH), 6.78 (d, OH), 6.93 (d, NH), 7.46 (t, 2H, Ar), 8.12 (d.d, 2H, Ar). 13C NMR (75 MHz, DMSO-d6): 88.10, 104.12, 115.46, 130.49, 132.37, 162.74, 167.35, 186.92.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The OH and NH2 hydrogen atoms were located in difference-Fourier maps, and refined isotropically. The C-bond hydrogen-atom positions were placed geometrically (C—H = 0.95–1.00 Å) and refined using a riding model by applying the constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 4. Experimental details.

  (I) (II)
Crystal data
Chemical formula C10H9Cl2FN2O3 C11H12Cl2N2O3
M r 295.09 291.13
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 15.6136 (1), 7.2214 (1), 10.7929 (1) 12.62183 (13), 8.77585 (9), 11.59930 (11)
β (°) 104.622 (1) 94.8294 (9)
V3) 1177.51 (2) 1280.26 (2)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 5.14 4.60
Crystal size (mm) 0.32 × 0.15 × 0.05 0.45 × 0.35 × 0.16
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2024) Gaussian (CrysAlis PRO; Rigaku OD, 2024)
Tmin, Tmax 0.408, 1.000 0.277, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16149, 2562, 2494 17344, 2808, 2738
R int 0.035 0.050
(sin θ/λ)max−1) 0.640 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.06 0.037, 0.104, 1.06
No. of reflections 2562 2808
No. of parameters 179 180
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.31 0.51, −0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989025004359/hb8127sup1.cif

e-81-00538-sup1.cif (1MB, cif)
e-81-00538-Isup4.cml (4.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025004359/hb8127Isup4.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004359/hb8127Isup4.hkl

e-81-00538-Isup4.hkl (205.2KB, hkl)
e-81-00538-IIsup5.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025004359/hb8127IIsup5.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989025004359/hb8127IIsup5.hkl

e-81-00538-IIsup5.hkl (224.6KB, hkl)

CCDC references: 2451169, 2451168

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The crystal structure determinations were performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow. This work was supported by the Western Caspian University and Azerbaijan Medical University in Azerbaijan. The authors’ contributions are as follows. Conceptualization, FIG, TH and ANB; synthesis, KAA, EVS and LMG; X-ray analysis, AIS; Hirshfeld surface analyses, crystal voids, inter­action energies and energy frameworks, TH; writing (review and editing of the manuscript) FIG and TH; funding acquisition, KIH; supervision, FIG, TH and ANB.

supplementary crystallographic information

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Crystal data

C10H9Cl2FN2O3 F(000) = 600
Mr = 295.09 Dx = 1.665 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 15.6136 (1) Å Cell parameters from 10775 reflections
b = 7.2214 (1) Å θ = 2.9–80.5°
c = 10.7929 (1) Å µ = 5.14 mm1
β = 104.622 (1)° T = 100 K
V = 1177.51 (2) Å3 Prism, colorless
Z = 4 0.32 × 0.15 × 0.05 mm

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 2562 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2494 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.035
Detector resolution: 10.0000 pixels mm-1 θmax = 80.7°, θmin = 2.9°
ω scans h = −19→19
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2024) k = −9→9
Tmin = 0.408, Tmax = 1.000 l = −10→13
16149 measured reflections

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: mixed
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.7639P] where P = (Fo2 + 2Fc2)/3
2562 reflections (Δ/σ)max < 0.001
179 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.31 e Å3

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.75812 (2) 0.64065 (5) 0.20981 (3) 0.02166 (11)
Cl2 0.71108 (2) 0.90786 (5) 0.38664 (3) 0.02237 (11)
F1 0.45932 (7) 0.18867 (16) 0.44559 (10) 0.0321 (2)
O2 0.91429 (7) 1.16468 (16) 0.49959 (11) 0.0231 (2)
O4 0.93636 (8) 0.66517 (16) 0.38219 (11) 0.0216 (2)
H4 0.9848 (18) 0.692 (4) 0.417 (2) 0.038 (7)*
O6 0.83823 (7) 0.53628 (16) 0.55147 (10) 0.0220 (2)
N1 0.91321 (10) 1.2742 (2) 0.30188 (16) 0.0279 (3)
H1A 0.9206 (17) 1.389 (4) 0.334 (2) 0.040 (7)*
H1B 0.9071 (15) 1.259 (4) 0.221 (2) 0.032 (6)*
N3 0.88523 (9) 0.96745 (19) 0.32966 (13) 0.0222 (3)
H3 0.8796 (15) 0.958 (4) 0.248 (2) 0.035 (6)*
C2 0.90498 (10) 1.1385 (2) 0.38332 (16) 0.0204 (3)
C4 0.87990 (10) 0.8058 (2) 0.40405 (14) 0.0195 (3)
H4A 0.896975 0.839528 0.496915 0.023*
C5 0.78496 (10) 0.7248 (2) 0.37028 (13) 0.0185 (3)
C6 0.77450 (10) 0.5688 (2) 0.46381 (14) 0.0178 (3)
C7 0.68898 (10) 0.4691 (2) 0.45000 (14) 0.0187 (3)
C8 0.61114 (10) 0.5077 (2) 0.35608 (15) 0.0220 (3)
H8 0.611405 0.600113 0.293538 0.026*
C9 0.53355 (11) 0.4121 (2) 0.35358 (16) 0.0239 (3)
H9 0.480694 0.437166 0.289650 0.029*
C10 0.53522 (11) 0.2797 (2) 0.44634 (16) 0.0238 (3)
C11 0.61052 (11) 0.2368 (2) 0.54016 (16) 0.0261 (3)
H11 0.609462 0.144287 0.602320 0.031*
C12 0.68768 (11) 0.3321 (2) 0.54142 (15) 0.0228 (3)
H12 0.740343 0.304306 0.605008 0.027*

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02614 (19) 0.0226 (2) 0.01572 (18) −0.00771 (14) 0.00426 (13) −0.00293 (12)
Cl2 0.02389 (19) 0.01773 (19) 0.0245 (2) 0.00268 (13) 0.00429 (14) 0.00032 (13)
F1 0.0255 (5) 0.0325 (6) 0.0395 (6) −0.0097 (4) 0.0100 (4) 0.0007 (5)
O2 0.0221 (5) 0.0199 (6) 0.0272 (6) −0.0036 (4) 0.0059 (4) −0.0061 (4)
O4 0.0204 (5) 0.0172 (5) 0.0271 (6) −0.0031 (4) 0.0057 (4) −0.0057 (4)
O6 0.0226 (5) 0.0229 (6) 0.0188 (5) 0.0006 (4) 0.0023 (4) 0.0011 (4)
N1 0.0359 (8) 0.0167 (7) 0.0321 (8) −0.0040 (6) 0.0103 (6) −0.0020 (6)
N3 0.0285 (7) 0.0174 (7) 0.0200 (6) −0.0056 (5) 0.0046 (5) −0.0023 (5)
C2 0.0147 (6) 0.0177 (7) 0.0281 (8) −0.0015 (5) 0.0041 (6) −0.0038 (6)
C4 0.0219 (7) 0.0151 (7) 0.0210 (7) −0.0024 (6) 0.0043 (5) −0.0024 (6)
C5 0.0214 (7) 0.0158 (7) 0.0171 (6) −0.0011 (6) 0.0029 (5) −0.0017 (5)
C6 0.0215 (7) 0.0160 (7) 0.0164 (7) 0.0001 (5) 0.0057 (5) −0.0024 (5)
C7 0.0218 (7) 0.0165 (7) 0.0186 (7) −0.0008 (6) 0.0063 (5) −0.0019 (5)
C8 0.0239 (7) 0.0211 (7) 0.0204 (7) −0.0011 (6) 0.0045 (6) 0.0014 (6)
C9 0.0219 (7) 0.0254 (8) 0.0237 (7) −0.0007 (6) 0.0042 (6) −0.0014 (6)
C10 0.0236 (7) 0.0207 (8) 0.0285 (8) −0.0058 (6) 0.0093 (6) −0.0045 (6)
C11 0.0297 (8) 0.0227 (8) 0.0269 (8) −0.0032 (7) 0.0088 (6) 0.0052 (6)
C12 0.0233 (7) 0.0210 (8) 0.0231 (7) −0.0001 (6) 0.0040 (6) 0.0028 (6)

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Geometric parameters (Å, º)

Cl1—C5 1.7826 (14) C4—C5 1.549 (2)
Cl2—C5 1.7923 (16) C5—C6 1.549 (2)
F1—C10 1.3534 (18) C6—C7 1.491 (2)
O2—C2 1.241 (2) C7—C8 1.400 (2)
O4—H4 0.78 (3) C7—C12 1.401 (2)
O4—C4 1.4032 (19) C8—H8 0.9500
O6—C6 1.2103 (19) C8—C9 1.389 (2)
N1—H1A 0.90 (3) C9—H9 0.9500
N1—H1B 0.86 (2) C9—C10 1.380 (2)
N1—C2 1.344 (2) C10—C11 1.379 (2)
N3—H3 0.87 (2) C11—H11 0.9500
N3—C2 1.366 (2) C11—C12 1.385 (2)
N3—C4 1.431 (2) C12—H12 0.9500
C4—H4A 1.0000
C4—O4—H4 108.1 (19) O6—C6—C5 116.71 (13)
H1A—N1—H1B 119 (2) O6—C6—C7 121.55 (14)
C2—N1—H1A 116.4 (17) C7—C6—C5 121.69 (13)
C2—N1—H1B 124.6 (17) C8—C7—C6 124.60 (14)
C2—N3—H3 117.2 (17) C8—C7—C12 119.10 (14)
C2—N3—C4 122.60 (14) C12—C7—C6 116.26 (14)
C4—N3—H3 120.1 (17) C7—C8—H8 119.7
O2—C2—N1 122.99 (15) C9—C8—C7 120.56 (15)
O2—C2—N3 121.50 (15) C9—C8—H8 119.7
N1—C2—N3 115.50 (15) C8—C9—H9 120.9
O4—C4—N3 111.59 (13) C10—C9—C8 118.28 (15)
O4—C4—H4A 109.0 C10—C9—H9 120.9
O4—C4—C5 106.95 (12) F1—C10—C9 118.43 (15)
N3—C4—H4A 109.0 F1—C10—C11 118.56 (15)
N3—C4—C5 111.33 (13) C11—C10—C9 123.01 (15)
C5—C4—H4A 109.0 C10—C11—H11 120.9
Cl1—C5—Cl2 110.35 (8) C10—C11—C12 118.29 (15)
C4—C5—Cl1 109.49 (10) C12—C11—H11 120.9
C4—C5—Cl2 107.43 (10) C7—C12—H12 119.6
C6—C5—Cl1 110.36 (10) C11—C12—C7 120.75 (15)
C6—C5—Cl2 107.22 (10) C11—C12—H12 119.6
C6—C5—C4 111.93 (12)
Cl1—C5—C6—O6 125.15 (13) C4—N3—C2—O2 −4.3 (2)
Cl1—C5—C6—C7 −57.44 (16) C4—N3—C2—N1 175.81 (14)
Cl2—C5—C6—O6 −114.62 (13) C4—C5—C6—O6 2.95 (19)
Cl2—C5—C6—C7 62.78 (15) C4—C5—C6—C7 −179.65 (13)
F1—C10—C11—C12 −179.17 (15) C5—C6—C7—C8 −1.6 (2)
O4—C4—C5—Cl1 −56.04 (14) C5—C6—C7—C12 −179.34 (13)
O4—C4—C5—Cl2 −175.90 (10) C6—C7—C8—C9 −177.53 (15)
O4—C4—C5—C6 66.65 (15) C6—C7—C12—C11 177.33 (15)
O6—C6—C7—C8 175.69 (15) C7—C8—C9—C10 0.5 (2)
O6—C6—C7—C12 −2.1 (2) C8—C7—C12—C11 −0.5 (2)
N3—C4—C5—Cl1 66.10 (14) C8—C9—C10—F1 178.80 (15)
N3—C4—C5—Cl2 −53.75 (14) C8—C9—C10—C11 −0.8 (3)
N3—C4—C5—C6 −171.20 (12) C9—C10—C11—C12 0.4 (3)
C2—N3—C4—O4 −124.46 (15) C10—C11—C12—C7 0.3 (3)
C2—N3—C4—C5 116.12 (15) C12—C7—C8—C9 0.2 (2)

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.90 (3) 2.06 (3) 2.9488 (19) 172 (2)
N1—H1B···O2ii 0.86 (2) 2.48 (2) 3.297 (2) 158 (2)
N3—H3···O6iii 0.87 (2) 2.06 (2) 2.9055 (18) 167 (2)
O4—H4···O2iv 0.78 (3) 1.91 (3) 2.6596 (16) 161 (3)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+5/2, z−1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, −y+2, −z+1.

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Crystal data

C11H12Cl2N2O3 F(000) = 600
Mr = 291.13 Dx = 1.510 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 12.62183 (13) Å Cell parameters from 11708 reflections
b = 8.77585 (9) Å θ = 3.5–80.3°
c = 11.59930 (11) Å µ = 4.60 mm1
β = 94.8294 (9)° T = 100 K
V = 1280.26 (2) Å3 Prism, colourless
Z = 4 0.45 × 0.35 × 0.16 mm

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 2808 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2738 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.050
Detector resolution: 10.0000 pixels mm-1 θmax = 80.7°, θmin = 3.5°
ω scans h = −13→16
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2024) k = −11→11
Tmin = 0.277, Tmax = 1.000 l = −14→14
17344 measured reflections

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: mixed
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.6302P] where P = (Fo2 + 2Fc2)/3
2808 reflections (Δ/σ)max = 0.001
180 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.43 e Å3

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.22629 (3) 0.88241 (4) 0.40687 (3) 0.02066 (13)
Cl2 0.24819 (3) 0.70279 (5) 0.61915 (3) 0.02309 (13)
O2 0.02392 (10) 0.37516 (13) 0.31405 (10) 0.0221 (3)
O4 0.03286 (9) 0.72384 (13) 0.48926 (10) 0.0192 (2)
O6 0.27591 (10) 0.45882 (14) 0.39418 (11) 0.0259 (3)
N1 0.03826 (12) 0.49974 (17) 0.14562 (12) 0.0212 (3)
N3 0.08327 (11) 0.62287 (15) 0.31617 (12) 0.0180 (3)
C2 0.04683 (12) 0.49344 (18) 0.26185 (13) 0.0181 (3)
C4 0.10682 (12) 0.63031 (17) 0.43899 (13) 0.0176 (3)
H4A 0.103457 0.525355 0.472057 0.021*
C5 0.22071 (13) 0.69474 (17) 0.46569 (13) 0.0185 (3)
C6 0.30485 (13) 0.58690 (19) 0.41747 (13) 0.0204 (3)
C7 0.41441 (13) 0.6404 (2) 0.40165 (14) 0.0225 (3)
C8 0.46819 (15) 0.5634 (2) 0.31877 (16) 0.0279 (4)
H8 0.433483 0.484415 0.274165 0.033*
C9 0.57245 (15) 0.6024 (2) 0.30150 (17) 0.0321 (4)
H9 0.607516 0.551826 0.243057 0.039*
C10 0.62617 (15) 0.7138 (2) 0.36820 (18) 0.0325 (4)
C11 0.57243 (15) 0.7900 (2) 0.45141 (18) 0.0326 (4)
H11 0.608274 0.866470 0.497716 0.039*
C12 0.46717 (15) 0.7555 (2) 0.46742 (16) 0.0275 (4)
H12 0.431028 0.810101 0.523000 0.033*
C13 0.74130 (16) 0.7514 (3) 0.3535 (2) 0.0440 (5)
H13A 0.762750 0.702446 0.283178 0.066*
H13B 0.786149 0.713990 0.420656 0.066*
H13C 0.749543 0.862022 0.347188 0.066*
H1A 0.059 (2) 0.574 (3) 0.110 (2) 0.030 (6)*
H1B 0.0183 (19) 0.420 (3) 0.110 (2) 0.028 (6)*
H3 0.0725 (18) 0.701 (3) 0.280 (2) 0.023 (5)*
H4 0.014 (2) 0.683 (3) 0.543 (3) 0.034 (6)*

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0239 (2) 0.0173 (2) 0.0211 (2) −0.00221 (12) 0.00407 (14) 0.00018 (12)
Cl2 0.0263 (2) 0.0291 (2) 0.01385 (19) 0.00153 (14) 0.00155 (14) −0.00215 (13)
O2 0.0313 (6) 0.0194 (6) 0.0164 (5) −0.0060 (4) 0.0065 (4) −0.0001 (4)
O4 0.0229 (5) 0.0207 (5) 0.0150 (5) 0.0016 (4) 0.0073 (4) 0.0021 (4)
O6 0.0270 (6) 0.0222 (6) 0.0290 (6) 0.0015 (5) 0.0057 (5) −0.0049 (5)
N1 0.0304 (7) 0.0189 (6) 0.0144 (6) −0.0061 (5) 0.0037 (5) −0.0009 (5)
N3 0.0253 (6) 0.0152 (6) 0.0139 (6) −0.0010 (5) 0.0032 (5) 0.0016 (5)
C2 0.0199 (7) 0.0179 (7) 0.0168 (7) 0.0003 (5) 0.0043 (5) 0.0001 (5)
C4 0.0217 (7) 0.0176 (7) 0.0139 (7) −0.0012 (5) 0.0042 (5) 0.0008 (5)
C5 0.0225 (7) 0.0182 (7) 0.0150 (7) −0.0007 (6) 0.0035 (5) −0.0005 (5)
C6 0.0235 (7) 0.0226 (7) 0.0156 (7) 0.0027 (6) 0.0039 (5) −0.0006 (6)
C7 0.0215 (7) 0.0258 (8) 0.0203 (7) 0.0026 (6) 0.0030 (6) 0.0021 (6)
C8 0.0277 (8) 0.0307 (9) 0.0258 (8) 0.0044 (7) 0.0061 (6) −0.0006 (7)
C9 0.0279 (9) 0.0390 (10) 0.0308 (9) 0.0081 (8) 0.0105 (7) 0.0065 (7)
C10 0.0231 (8) 0.0377 (10) 0.0372 (10) 0.0018 (7) 0.0063 (7) 0.0162 (8)
C11 0.0269 (9) 0.0346 (10) 0.0358 (10) −0.0041 (7) 0.0000 (7) 0.0040 (8)
C12 0.0263 (8) 0.0305 (9) 0.0260 (8) −0.0010 (7) 0.0039 (6) −0.0010 (7)
C13 0.0258 (10) 0.0529 (14) 0.0546 (13) −0.0018 (9) 0.0104 (9) 0.0210 (11)

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Geometric parameters (Å, º)

Cl1—C5 1.7864 (16) C6—C7 1.486 (2)
Cl2—C5 1.7861 (16) C7—C8 1.397 (2)
O2—C2 1.248 (2) C7—C12 1.400 (3)
O4—C4 1.4060 (18) C8—H8 0.9500
O4—H4 0.78 (3) C8—C9 1.390 (3)
O6—C6 1.205 (2) C9—H9 0.9500
N1—C2 1.345 (2) C9—C10 1.388 (3)
N1—H1A 0.82 (3) C10—C11 1.396 (3)
N1—H1B 0.84 (3) C10—C13 1.514 (2)
N3—C2 1.360 (2) C11—H11 0.9500
N3—C4 1.432 (2) C11—C12 1.390 (3)
N3—H3 0.81 (3) C12—H12 0.9500
C4—H4A 1.0000 C13—H13A 0.9800
C4—C5 1.551 (2) C13—H13B 0.9800
C5—C6 1.561 (2) C13—H13C 0.9800
C4—O4—H4 109 (2) C8—C7—C6 116.30 (16)
C2—N1—H1A 121.9 (18) C8—C7—C12 119.18 (16)
C2—N1—H1B 117.0 (16) C12—C7—C6 124.44 (15)
H1A—N1—H1B 121 (2) C7—C8—H8 120.0
C2—N3—C4 122.18 (13) C9—C8—C7 120.07 (18)
C2—N3—H3 115.9 (17) C9—C8—H8 120.0
C4—N3—H3 118.9 (17) C8—C9—H9 119.4
O2—C2—N1 121.23 (15) C10—C9—C8 121.10 (18)
O2—C2—N3 123.58 (14) C10—C9—H9 119.4
N1—C2—N3 115.19 (14) C9—C10—C11 118.69 (17)
O4—C4—N3 110.47 (13) C9—C10—C13 121.3 (2)
O4—C4—H4A 109.1 C11—C10—C13 120.0 (2)
O4—C4—C5 109.93 (12) C10—C11—H11 119.6
N3—C4—H4A 109.1 C12—C11—C10 120.89 (19)
N3—C4—C5 109.05 (12) C12—C11—H11 119.6
C5—C4—H4A 109.1 C7—C12—H12 120.0
Cl2—C5—Cl1 109.48 (8) C11—C12—C7 120.02 (17)
C4—C5—Cl1 108.99 (11) C11—C12—H12 120.0
C4—C5—Cl2 108.20 (10) C10—C13—H13A 109.5
C4—C5—C6 110.76 (13) C10—C13—H13B 109.5
C6—C5—Cl1 111.85 (11) C10—C13—H13C 109.5
C6—C5—Cl2 107.47 (11) H13A—C13—H13B 109.5
O6—C6—C5 116.31 (14) H13A—C13—H13C 109.5
O6—C6—C7 122.32 (15) H13B—C13—H13C 109.5
C7—C6—C5 121.38 (14)
Cl1—C5—C6—O6 −139.23 (13) C4—N3—C2—N1 −173.78 (14)
Cl1—C5—C6—C7 40.85 (18) C4—C5—C6—O6 −17.42 (19)
Cl2—C5—C6—O6 100.57 (15) C4—C5—C6—C7 162.65 (14)
Cl2—C5—C6—C7 −79.35 (16) C5—C6—C7—C8 −155.04 (15)
O4—C4—C5—Cl1 −60.19 (14) C5—C6—C7—C12 28.2 (2)
O4—C4—C5—Cl2 58.79 (14) C6—C7—C8—C9 −177.58 (17)
O4—C4—C5—C6 176.34 (12) C6—C7—C12—C11 175.43 (17)
O6—C6—C7—C8 25.0 (2) C7—C8—C9—C10 2.2 (3)
O6—C6—C7—C12 −151.71 (18) C8—C7—C12—C11 −1.2 (3)
N3—C4—C5—Cl1 61.06 (14) C8—C9—C10—C11 −1.9 (3)
N3—C4—C5—Cl2 −179.97 (10) C8—C9—C10—C13 177.11 (18)
N3—C4—C5—C6 −62.41 (16) C9—C10—C11—C12 −0.1 (3)
C2—N3—C4—O4 −110.90 (16) C10—C11—C12—C7 1.6 (3)
C2—N3—C4—C5 128.18 (15) C12—C7—C8—C9 −0.6 (3)
C4—N3—C2—O2 5.2 (2) C13—C10—C11—C12 −179.03 (19)

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.82 (3) 2.27 (3) 3.0261 (19) 153 (2)
N1—H1B···O4ii 0.84 (3) 2.14 (3) 2.9798 (18) 177 (2)
N3—H3···O2iii 0.81 (3) 2.19 (3) 2.9445 (18) 156 (2)
O4—H4···O2iv 0.78 (3) 1.83 (3) 2.5979 (16) 168 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y+1, −z+1.

References

  1. Aliyeva, V. A., Gurbanov, A. V., Huseynov, F. E., Hajiyeva, S. R., Conceiçao, N. R., Nunes, A. V. M., Pombeiro, A. J. L. & Mahmudov, K. T. (2024). Polyhedron, 255, 116955.
  2. Aliyev, E. H., Bahmanova, F. N., Hamidov, S. Z. & Chyragov, F. M. (2020). Izvest. Vuzov-Prikladnaya Khim. Biotek.10, 107–113.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  4. Guseinov, F. I., Ovsyannikov, V. O., Shuvalova, E. V., Kustov, L. M., Kobrakov, K. I., Samigullina, A. I. & Mahmudov, K. T. (2024). New J. Chem.48, 12869–12872.
  5. Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd.42, 943–947.
  6. Hajiyeva, S. R., Huseynov, F. E., Atioğlu, Z., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 110–116. [DOI] [PMC free article] [PubMed]
  7. Huseynov, F. E., Mahmoudi, G., Hajiyeva, S. R., Shamilov, N. T., Zubkov, F. I., Nikitina, E. V., Prisyazhnyuk, E. D. & Kopylovich, M. N. (2021). Polyhedron, 209, 115453.
  8. Khalilov, A. N. (2021). Rev. Roum. Chim.66, 719.
  9. Mahmudov, K. T., Kerimli, F. Sh., Mammadov, E. S., Gurbanov, A. V., Akhmedova, N. F. & Mammadov, S. E. (2022). Pet. Chem.62, 933–941.
  10. Mamedov, S. E., Akhmedov, E. I., Kerimli, F. S. & Makhmudova, M. I. (2006). Russ. J. Appl. Chem.79, 1723–1725.
  11. Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Bhattarai, A., Kerimli, F. S. & Mamedov, İ. G. (2023). Acta Cryst. E79, 494–498. [DOI] [PMC free article] [PubMed]
  12. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989025004359/hb8127sup1.cif

e-81-00538-sup1.cif (1MB, cif)
e-81-00538-Isup4.cml (4.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025004359/hb8127Isup4.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004359/hb8127Isup4.hkl

e-81-00538-Isup4.hkl (205.2KB, hkl)
e-81-00538-IIsup5.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025004359/hb8127IIsup5.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989025004359/hb8127IIsup5.hkl

e-81-00538-IIsup5.hkl (224.6KB, hkl)

CCDC references: 2451169, 2451168

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES