Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 May 2;81(Pt 6):464–468. doi: 10.1107/S2056989025003809

Synthesis, crystal structure and Hirshfeld surface analysis of 1,1′-[oxybis(ethane-2,1-di­yl)]bis­(2-methyl­sulfanyl-1H-benzo[d]imidazole)

Ahmed Moussaif a, Lhoussaine El Ghayati b, Camille Kalonji Mubengayi c, Abdulsalam Alsubari d,*, El Mokhtar Essassi b, Joel T Mague e, Youssef Ramli f,*
Editor: L Van Meerveltg
PMCID: PMC12142410  PMID: 40487692

In the title compound, the terminal benzimidazole moieties are inclined to one another by about 68°. In the crystal, tetra­molecular strands are generated by C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions and are linked by C—H⋯π(ring) and π-stacking inter­actions.

Keywords: crystal structure, benzimidazole, thio­ether, hydrogen bond, π-stacking, C—H⋯π(ring) inter­actions

Abstract

The asymmetric unit of the title compound, C20H22N4OS2, consists of two independent mol­ecules, one of which is disordered. In each mol­ecule, the mean planes of the terminal benzimidazole moieties are inclined to one another by about 68°. In the crystal, tetra­molecular strands are generated by C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions and are linked by C—H⋯π(ring) and π-stacking inter­actions.

1. Chemical context

The benzimidazole ring system consists of a five-membered imidazole ring (with two nitro­gens included in the heterocyclic structure) fused to another aromatic ring. This structure gives benzimidazoles significant chemical stability and a range of biological properties (Obaid et al., 2022), making them a subject of inter­est in the pharmacological field.

The benzimidazole ring is a well-known motif recognized for its chemical flexibility, allowing effective inter­action with various biological targets. As derivatives of this ring, bis­benzimidazoles share inter­esting physicochemical properties, such as their ability to inter­act with biological macromolecules like proteins, enzymes, and DNA. These inter­actions make them promising candidates for the development of drugs aimed at treating various diseases. Several bis­benzimidazole derivatives have been studied for their activity against various pathogens, including parasites and bacteria. Compounds from this class are used in the treatment of parasitic diseases such as giardiasis, amebiasis, and onchocerciasis. Additionally, some studies have revealed that bis­benzimidazoles possess anti­cancer properties. They work by inhibiting key enzymes in cancer cells, blocking cell division, or inducing mechanisms of programmed cell death (apoptosis). For instance, derivatives like levamisole, used in cancer treatments (Yadav et al., 2018), have shown potential effects in stimulating the immune system and inhibiting tumor growth. Moreover, emerging research suggests that certain bis­benzimidazoles could be beneficial in the treatment of neurodegenerative diseases like Alzheimer’s disease (Algul et al., 2025).

Continuing our research in this field (e.g. Missioui et al., 2022), we synthesized the title compound 1,1′-[oxybis(ethane-2,1-di­yl)]bis­(2-methyl­sulfanyl-1H-benzo[d]imidazole) via an alkyl­ation reaction. We determined its mol­ecular and crystalline structures, and conducted a Hirshfeld surface analysis to analyze the inter­molecular inter­actions.1.

2. Structural commentary

The asymmetric unit consists of two independent mol­ecules, one of which is disordered (Figs. 1 and 2). This involves the rotation of one 2-(methyl­sulfan­yl)benzimidazole unit by approximately 170° about the N7—C32 bond in a 0.7200 (13)/0.2800 (13) ratio, while for that at the other end of the mol­ecule a shift of 0.5 Å parallel to the plane of the unit is observed in a 0.775 (6)/0.225 (6) ratio (Fig. 2). In the ordered mol­ecule, the two benzimidazole units are nearly planar as the dihedral angles between their constituent planes are less than 2°, while the dihedral angle between the mean planes of the benzimidazole units in this mol­ecule is 68.38 (9)° (Fig. 1) and the C7—N2—C9 —C10 and the C13—N3—C12—C11 torsion angles are 99.1 (3) and 103.6 (3)°, respectively. In the central chain, the N2—C9—C10—O1 and the C11—O1—C10—C9 torsion angles are, respectively, −179.5 (2) and −180.0 (2)°, while the C10—O1—C11—C12 and the O1—C11—C12—N3 torsion angles are, respectively, 179.9 (2) and −60.0 (3)°. One methyl­sulfanyl group lies nearly in the plane of the five-membered ring to which it is attached [C8—S1—C7—N1 = −1.8 (3)°], but the other is rotated moderately out of the corresponding plane [C14—S2—C13—N4 = −23.2 (3)°]. The benzimidazole units in the disordered mol­ecule were refined as planar rigid groups and the dihedral angle between their mean planes in the major component is 68.12 (11)° but because of the disorder, comparison of its torsion angles with those of the ordered mol­ecule is not useful. In the ordered mol­ecule, bond distances and inter­bond angles are as expected for the formulation given.

Figure 1.

Figure 1

The ordered mol­ecule in the asymmetric unit of the title compound with labeling scheme and 50% probability ellipsoids.

Figure 2.

Figure 2

The disordered mol­ecule in the asymmetric unit of the title compound showing the overlay of the two components with the minor component depicted with dashed lines.

3. Supra­molecular features

In the crystal, the major component of the disordered mol­ecule containing O2 is linked to the mol­ecule containing O1 at −x + 1, −y + 2, −z + 1 by a C35—H34B⋯N4 hydrogen bond (Table 1) and this two-mol­ecule unit is linked to its counterpart at −x + 1, −y, −z by a C29—H29BCg1 inter­action (Table 1 and Fig. 3). These tetra­molecular strands are connected by C2—H2⋯Cg5 and C11—H11B⋯Cg11 inter­actions (Table 1) as well as by π-stacking inter­actions between inversion-related N1/C6/C1/N2/C7 rings [centroid–centroid distance = 3.6645 (18) Å, dihedral angle = 0.03 (18)°, slippage = 1.06 Å] to generate the full 3-D structure (Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg5 and Cg11 are the centroids of the N5/C26/C21/N6/C27, the C21-C26 and the C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg5i 0.95 2.71 3.583 (3) 153
C11—H11BCg11ii 0.99 2.74 3.423 (3) 126
C29—H29BCg1iii 0.99 2.70 3.489 (3) 137
C34—H34B⋯N4iv 0.98 2.50 3.398 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

One tetra­molecular strand viewed along the c-axis direction with C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by blue and green dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

Figure 4.

Figure 4

Packing viewed along the b-axis direction with C—H⋯N hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions depicted, respectively, by blue, green and orange dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD updated to November 2024 (Groom et al., 2016)) with the fragment shown in Fig. 5 (R = C) and restricted to only organic compounds generated seven hits. Four of these contained only one 2-(methyl­sulfan­yl)-1H-benzamidazole moiety and had R = CH2CH2OH (DUNZUI: Akonan et al., 2010), 5,6-di­hydro-2H-pyran-2-one (IHAREP: Hammal et al., 2008), morpholin-4-methyl (SIMCUN: Abou et al., 2007) and the ionic compound 1-methyl-2-(methyl­sulfan­yl)-1H-benzimidazol-3-ium iodide (WANXUH: Hasty et al., 2017). For these, the carbon atom of the methysulfanyl group lies in or very close to the plane of the benzimidazole moiety, while for the first three, the R group projects well out of that plane, which is similar to what is seen in the title mol­ecule. In the asymmetric unit of DUNZUI there are two independent mol­ecules and in its crystal packing, there are π-stacking inter­actions between five-membered rings of one of these. More extensive π-stacking occurs in WANXUH because of its relatively flat steric profile, while in SIMCUN both rings of the benzimidazole moiety participate in π-stacking inter­actions.

Figure 5.

Figure 5

The fragment used for the database search.

Two of the other examples are more analogous to the title mol­ecule with two 2-(methyl­sulfan­yl)-1H-benzamidazole moieties bridged by a —(CH2)3— chain (GEVJOH: Yüksektepe et al., 2007) or by a 1,4-CH2C6H4CH2 unit (UGACEM: Rajakannu et al., 2013) while the third has two 3-methyl-2-(methyl­sulfan­yl)-1H-benzimidazol-3-ium cations bridged by a 1,3-phenyl­ene group and triflate anions (KEYQUE: Steinke et al., 2023). In GEVJOH, the dihedral angle between the mean planes of the two benzimidazole units is 74.87 (6)° while the torsion angles corresponding to the C7—N2—C9 —C10 and the C13—N3—C12—C11 torsion in the title mol­ecule are, 87.9 (2) and 93.6 (2)°, respectively, similar to the title compound. For the other two, the bridging units are much less flexible with the mean planes of the benzimidazole units in KEYQUE inclined to that of the central phenyl­ene ring by 60.5 (2) and 86.7 (2)°, respectively. UGACEM has crystallographically-imposed centrosymmetry and the unique benzimidazole is essentially perpendicular to the central phenyl­ene ring.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis of the title compound was performed with CrystalExplorer (Spackman et al., 2021) to determine the contributions of the several inter­molecular inter­actions in the crystal. Full descriptions of the plots obtained and their inter­pretations have been published (Tan et al., 2019). The dnorm surface for the mol­ecule containing O1 (ordered mol­ecule) calculated over the range −0.1811 to 1.3161 in arbitrary units together with several nearest neighbor mol­ecules including the major component of the disordered mol­ecule is shown in Fig. 6a. The C—H⋯N hydrogen bonds are depicted by red dashed lines and are clearly associated with the dark red spots on the dnorm surface. Fig. 6b shows the surface for the major component of the disordered mol­ecule calculated over the shape function and showing the characteristic pattern of triangles indicating the presence of the π-stacking inter­actions (dashed lines) noted in Section 3. The 2-D fingerprint plots for all inter­molecular inter­actions and those delineated into specific contacts are presented in Fig. 7. The largest contribution is from H⋯H contacts (Fig. 7b, 52.5% of the total) consistent with the significant hydrogen content of the mol­ecule and the fact that the hydrogen atoms constitute a large portion of its periphery. The next most important contact is C⋯H/H⋯C at 21.9% (Fig. 7c), which primarily comes from the C—H⋯π(ring) inter­actions. The N⋯H/H⋯N contacts (Fig. 7d), contributing 9.0%, appear as a pair of relatively sharp spikes at de + di = 2.88 Å and correspond primarily to the C—H⋯N hydrogen bonds while S⋯H/H⋯S contacts (Fig. 7e) contribute 8.5%. All other atom⋯atom contacts contribute a total of 8.1% and are considered quite minor.

Figure 6.

Figure 6

Hirshfeld surfaces: (a) the dnorm surface for the ordered mol­ecule with several nearest neighbors with C—H⋯N hydrogen bonds shown as dashed lines; (b) the surface calculated over the shape function for the major component of the disordered mol­ecule showing the π-stacking inter­action.

Figure 7.

Figure 7

Fingerprint plots showing: (a) all inter­molecular inter­actions and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) S⋯H/H⋯S contacts.

6. Synthesis and crystallization

To a 50 mL round-bottom flask, 20 mL of di­methyl­formamide (DMF) were added followed by the successive addition of 0.0122 moles of 2-methyl­mercaptobenzimidazole, 0.0150 moles of potassium carbonate (K2CO3), 0.0070 moles of 1-chloro-2-(2-chloro­eth­oxy)ethane, and 0.0007 moles of tetra­butyl­ammonium bromide (BTBA). The mixture was stirred at room temperature for 2 h.

The salts were removed by filtration and the solvent was then removed under reduced pressure on a rotary evaporator. The residue obtained was subsequently purified by silica gel column chromatography, using hexa­ne/ethyl acetate (80/20, v/v) as the mobile phase and recrystallized from ethanol, yielding the title compound with a 72% yield as colorless crystals.

1H NMR (300 MHz, CDCl3) (δ, ppm): 2.54 (s, 6H), 3.73 (t, 3J = 7.5 Hz, 4H), 4.33 (t, 3J = 7.9 Hz, 4H), 7.48–7.82 (m, 8Har).; 13C NMR (300 MHz, CDCl3) (δ, ppm): 15.5, 49.4, 71.3, 112.7, 124.4, 127.4, 138.8, 148.1, 171.2. HRMS (ESI–MS) (m/z) 398.54.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. In the mol­ecule containing O2, one end is disordered by a modest shift in a 0.775 (6)/0.225 (6) ratio while the other end is disordered by an approximate 170° rotation about the C31—C32 bond in a 0.7200 (13)/0.2800 (13) ratio. In both instances, the disordered portions were refined as rigid groups.

Table 2. Experimental details.

Crystal data
Chemical formula C20H22N4OS2
M r 398.53
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 100
a, b, c (Å) 10.6654 (12), 13.5974 (15), 15.7917 (17)
α, β, γ (°) 109.206 (2), 101.687 (2), 107.789 (2)
V3) 1938.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.36 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.90, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 36334, 10449, 5628
R int 0.074
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.199, 1.00
No. of reflections 10449
No. of parameters 460
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.32, −1.07

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2019/1 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989025003809/vm2313sup1.cif

e-81-00464-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025003809/vm2313Isup2.hkl

e-81-00464-Isup2.hkl (828.9KB, hkl)
e-81-00464-Isup3.cml (7.7KB, cml)

Supporting information file. DOI: 10.1107/S2056989025003809/vm2313Isup3.cml

CCDC reference: 2447131

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, EME and AM; method­ology, AA; investigation, AM and LEG; writing (original draft), JTM and AM; writing (review and editing of the manuscript), YR; formal analysis, AA; supervision, EME; crystal structure determination and validation, JTM; resources, CKM

supplementary crystallographic information

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Crystal data

C20H22N4OS2 Z = 4
Mr = 398.53 F(000) = 840
Triclinic, P1 Dx = 1.365 Mg m3
a = 10.6654 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.5974 (15) Å Cell parameters from 9943 reflections
c = 15.7917 (17) Å θ = 2.6–29.0°
α = 109.206 (2)° µ = 0.29 mm1
β = 101.687 (2)° T = 100 K
γ = 107.789 (2)° Column, colourless
V = 1938.8 (4) Å3 0.36 × 0.22 × 0.18 mm

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Data collection

Bruker SMART APEX diffractometer 10449 independent reflections
Radiation source: fine-focus sealed tube 5628 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.074
Detector resolution: 8.3333 pixels mm-1 θmax = 29.5°, θmin = 1.7°
φ and ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −18→18
Tmin = 0.90, Tmax = 0.95 l = −21→21
36334 measured reflections

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1077P)2] where P = (Fo2 + 2Fc2)/3
10449 reflections (Δ/σ)max = 0.003
460 parameters Δρmax = 1.32 e Å3
3 restraints Δρmin = −1.07 e Å3

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, collected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 30 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the molecule containing O2, one end is disordered by a modest shift in a 0.775 (6)/0.225 (6) ratio while the other end is disordered by an approximate 180° rotation about the C31—C32 bond in a 0.7200 (13)/0.2800 (13) ratio. In both instances, the disordered portions were refined as rigid groups.

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.28306 (8) 0.39883 (6) 0.31081 (5) 0.03271 (19)
S2 0.28353 (10) 0.94354 (7) 0.40847 (8) 0.0589 (3)
O1 0.14040 (17) 0.69787 (14) 0.45180 (12) 0.0265 (4)
N1 0.3274 (2) 0.34561 (18) 0.46399 (16) 0.0261 (5)
N2 0.3144 (2) 0.51604 (17) 0.49496 (15) 0.0245 (5)
N3 0.0989 (2) 0.90589 (18) 0.50202 (16) 0.0287 (5)
N4 0.2898 (2) 1.0698 (2) 0.58629 (18) 0.0370 (6)
C1 0.3323 (3) 0.5043 (2) 0.57981 (18) 0.0254 (6)
C2 0.3387 (3) 0.5740 (2) 0.66891 (19) 0.0301 (6)
H2 0.332501 0.645270 0.681074 0.036*
C3 0.3544 (3) 0.5346 (2) 0.73914 (19) 0.0347 (7)
H3 0.358552 0.579523 0.801018 0.042*
C4 0.3641 (3) 0.4298 (2) 0.7205 (2) 0.0331 (7)
H4 0.374925 0.405259 0.770283 0.040*
C5 0.3586 (3) 0.3602 (2) 0.6312 (2) 0.0306 (6)
H5 0.365884 0.289325 0.619425 0.037*
C6 0.3419 (3) 0.3990 (2) 0.56012 (19) 0.0256 (6)
C7 0.3107 (3) 0.4180 (2) 0.42919 (19) 0.0253 (6)
C8 0.2915 (4) 0.2620 (2) 0.2606 (2) 0.0437 (8)
H8A 0.210903 0.203462 0.261097 0.066*
H8B 0.378035 0.264102 0.298536 0.066*
H8C 0.290012 0.244072 0.194921 0.066*
C9 0.2979 (3) 0.6119 (2) 0.47908 (19) 0.0266 (6)
H9A 0.319226 0.612552 0.421047 0.032*
H9B 0.364700 0.684011 0.533683 0.032*
C10 0.1505 (3) 0.6037 (2) 0.46773 (19) 0.0269 (6)
H10A 0.082889 0.531822 0.413204 0.032*
H10B 0.128798 0.604427 0.525953 0.032*
C11 0.0038 (3) 0.6962 (2) 0.44035 (19) 0.0277 (6)
H11A −0.019845 0.697939 0.498150 0.033*
H11B −0.065672 0.625561 0.385448 0.033*
C12 0.0002 (3) 0.7980 (2) 0.42393 (19) 0.0299 (6)
H12A 0.021078 0.793568 0.364827 0.036*
H12B −0.095464 0.795720 0.414292 0.036*
C13 0.2245 (3) 0.9775 (2) 0.5057 (2) 0.0360 (7)
C14 0.3995 (4) 1.0841 (3) 0.4299 (3) 0.0683 (12)
H14A 0.435052 1.079617 0.376729 0.103*
H14B 0.478065 1.115441 0.489089 0.103*
H14C 0.348430 1.133494 0.435353 0.103*
C15 0.2020 (3) 1.0574 (2) 0.6399 (2) 0.0328 (7)
C16 0.2183 (3) 1.1275 (2) 0.7317 (2) 0.0410 (8)
H16 0.298217 1.197014 0.767967 0.049*
C17 0.1160 (4) 1.0933 (3) 0.7681 (2) 0.0506 (9)
H17 0.126520 1.139227 0.831367 0.061*
C18 −0.0043 (4) 0.9924 (3) 0.7150 (2) 0.0517 (9)
H18 −0.074229 0.972461 0.742407 0.062*
C19 −0.0230 (3) 0.9218 (2) 0.6238 (2) 0.0384 (7)
H19 −0.104208 0.853237 0.587287 0.046*
C20 0.0820 (3) 0.9558 (2) 0.58821 (19) 0.0290 (6)
O2 0.3432 (2) 0.27334 (17) 0.01613 (14) 0.0388 (5)
S3 0.16784 (16) −0.00367 (13) 0.02660 (19) 0.0477 (5) 0.775 (6)
N5 0.3973 (3) 0.04310 (18) 0.17227 (15) 0.0359 (8) 0.775 (6)
N6 0.44458 (15) 0.10270 (18) 0.06022 (10) 0.0285 (6) 0.775 (6)
C21 0.57282 (16) 0.13722 (15) 0.12777 (10) 0.0269 (7) 0.775 (6)
C22 0.70801 (15) 0.1992 (2) 0.13525 (16) 0.0274 (8) 0.775 (6)
H22 0.726802 0.224703 0.088098 0.033* 0.775 (6)
C23 0.81397 (19) 0.2219 (2) 0.21508 (18) 0.0331 (9) 0.775 (6)
H23 0.908138 0.264333 0.223266 0.040* 0.775 (6)
C24 0.7853 (3) 0.1837 (2) 0.28399 (14) 0.0332 (10) 0.775 (6)
H24 0.860720 0.200592 0.337720 0.040* 0.775 (6)
C25 0.6500 (3) 0.1219 (3) 0.27622 (13) 0.0349 (10) 0.775 (6)
H25 0.631661 0.096128 0.323322 0.042* 0.775 (6)
C26 0.5421 (2) 0.09900 (16) 0.19659 (11) 0.0315 (8) 0.775 (6)
C27 0.34510 (18) 0.04853 (11) 0.09217 (12) 0.0343 (8) 0.775 (6)
C28 0.1014 (6) −0.1083 (4) 0.0703 (4) 0.0574 (16) 0.775 (6)
H28A −0.000450 −0.147436 0.039998 0.086* 0.775 (6)
H28B 0.143558 −0.163816 0.055384 0.086* 0.775 (6)
H28C 0.124789 −0.070815 0.139505 0.086* 0.775 (6)
S3A 0.1493 (6) 0.0051 (5) −0.0063 (5) 0.0477 (5) 0.225 (6)
N5A 0.3535 (8) 0.0386 (7) 0.1495 (5) 0.0359 (8) 0.225 (6)
N6A 0.4310 (6) 0.1156 (7) 0.0536 (4) 0.0285 (6) 0.225 (6)
C21A 0.5488 (6) 0.1448 (7) 0.1284 (4) 0.0269 (7) 0.225 (6)
C22A 0.6890 (6) 0.2104 (10) 0.1500 (6) 0.0274 (8) 0.225 (6)
H22A 0.720515 0.243208 0.109577 0.033* 0.225 (6)
C23A 0.7804 (7) 0.2254 (9) 0.2336 (6) 0.0331 (9) 0.225 (6)
H23A 0.877397 0.269824 0.251334 0.040* 0.225 (6)
C24A 0.7330 (9) 0.1763 (10) 0.2925 (5) 0.0332 (10) 0.225 (6)
H24A 0.798933 0.188189 0.349213 0.040* 0.225 (6)
C25A 0.5928 (10) 0.1110 (11) 0.2707 (5) 0.0349 (10) 0.225 (6)
H25A 0.561761 0.077973 0.311061 0.042* 0.225 (6)
C26A 0.4993 (8) 0.0958 (7) 0.1871 (4) 0.0315 (8) 0.225 (6)
C27A 0.3187 (6) 0.0537 (4) 0.0717 (4) 0.0343 (8) 0.225 (6)
C28A 0.067 (2) −0.1135 (11) 0.0191 (15) 0.0574 (16) 0.225 (6)
H28D −0.032413 −0.152168 −0.019878 0.086* 0.225 (6)
H28E 0.112093 −0.166856 0.004352 0.086* 0.225 (6)
H28F 0.076253 −0.086085 0.086683 0.086* 0.225 (6)
C29 0.4256 (3) 0.1246 (2) −0.02772 (19) 0.0342 (7)
H29A 0.329141 0.074043 −0.072048 0.041*
H29B 0.490264 0.102472 −0.059150 0.041*
C30 0.4495 (3) 0.2450 (2) −0.0135 (2) 0.0330 (6)
H30A 0.542073 0.298032 0.035349 0.040*
H30B 0.448728 0.252538 −0.073792 0.040*
C31 0.3493 (3) 0.3779 (2) 0.0136 (2) 0.0355 (7)
H31A 0.322927 0.368331 −0.053359 0.043*
H31B 0.446198 0.436242 0.047735 0.043*
C32 0.2527 (5) 0.4171 (3) 0.0588 (3) 0.0296 (9) 0.7195 (12)
H32A 0.164360 0.351176 0.040756 0.036* 0.7195 (12)
H32B 0.296278 0.452162 0.128946 0.036* 0.7195 (12)
C32A 0.1981 (13) 0.3781 (6) 0.0241 (9) 0.0296 (9) 0.2805 (12)
H32C 0.119843 0.314492 −0.031603 0.036* 0.2805 (12)
H32D 0.188617 0.368449 0.082266 0.036* 0.2805 (12)
S4 0.39349 (9) 0.68180 (7) 0.19358 (6) 0.0311 (2) 0.7195 (12)
N7 0.22350 (13) 0.49926 (7) 0.02765 (7) 0.0211 (5) 0.7195 (12)
N8 0.21846 (13) 0.66717 (8) 0.03301 (7) 0.0223 (6) 0.7195 (12)
C33 0.27146 (8) 0.61603 (6) 0.07802 (5) 0.0231 (7) 0.7195 (12)
C34 0.41965 (18) 0.82874 (7) 0.22143 (9) 0.0458 (12) 0.7195 (12)
H34A 0.450478 0.850518 0.173404 0.069* 0.7195 (12)
H34B 0.491032 0.878050 0.284386 0.069* 0.7195 (12)
H34C 0.331546 0.836988 0.221551 0.069* 0.7195 (12)
C35 0.12425 (11) 0.57701 (9) −0.05554 (6) 0.0244 (7) 0.7195 (12)
C36 0.03477 (17) 0.58012 (13) −0.13155 (8) 0.0288 (8) 0.7195 (12)
H36 0.032523 0.649751 −0.130650 0.035* 0.7195 (12)
C37 −0.04984 (16) 0.47801 (15) −0.20768 (7) 0.0264 (8) 0.7195 (12)
H37 −0.111558 0.477422 −0.260650 0.032* 0.7195 (12)
C38 −0.04811 (17) 0.37225 (13) −0.20983 (8) 0.0354 (9) 0.7195 (12)
H38 −0.109548 0.303410 −0.263525 0.042* 0.7195 (12)
C39 0.04091 (19) 0.36846 (10) −0.13557 (9) 0.0313 (9) 0.7195 (12)
H39 0.043377 0.298685 −0.137039 0.038* 0.7195 (12)
C40 0.12734 (12) 0.47218 (8) −0.05802 (6) 0.0239 (7) 0.7195 (12)
S4A 0.0421 (3) 0.39830 (19) −0.15751 (16) 0.0311 (2) 0.2805 (12)
N7A 0.1945 (4) 0.4857 (2) 0.02976 (17) 0.0211 (5) 0.2805 (12)
N8A 0.1597 (4) 0.61691 (18) −0.02063 (18) 0.0223 (6) 0.2805 (12)
C33A 0.1366 (2) 0.50973 (18) −0.04389 (15) 0.0231 (7) 0.2805 (12)
C34A −0.0100 (5) 0.4769 (3) −0.22092 (19) 0.0458 (12) 0.2805 (12)
H34D 0.073521 0.533118 −0.220876 0.069* 0.2805 (12)
H34E −0.062280 0.515944 −0.189389 0.069* 0.2805 (12)
H34F −0.069224 0.424149 −0.286721 0.069* 0.2805 (12)
C35A 0.2426 (3) 0.6713 (2) 0.07740 (18) 0.0244 (7) 0.2805 (12)
C36A 0.3022 (5) 0.7864 (2) 0.1396 (2) 0.0288 (8) 0.2805 (12)
H36A 0.287487 0.841980 0.119762 0.035* 0.2805 (12)
C37A 0.3831 (5) 0.8157 (3) 0.2307 (2) 0.0264 (8) 0.2805 (12)
H37A 0.424704 0.893413 0.274827 0.032* 0.2805 (12)
C38A 0.4068 (5) 0.7329 (4) 0.26154 (19) 0.0354 (9) 0.2805 (12)
H38A 0.464784 0.757051 0.324994 0.042* 0.2805 (12)
C39A 0.3472 (6) 0.6189 (3) 0.20094 (18) 0.0313 (9) 0.2805 (12)
H39A 0.361568 0.563534 0.221265 0.038* 0.2805 (12)
C40A 0.2647 (4) 0.5887 (2) 0.10817 (16) 0.0239 (7) 0.2805 (12)

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0413 (4) 0.0294 (4) 0.0308 (4) 0.0179 (3) 0.0115 (3) 0.0135 (3)
S2 0.0604 (6) 0.0366 (5) 0.0818 (7) 0.0194 (4) 0.0425 (5) 0.0165 (5)
O1 0.0267 (9) 0.0217 (9) 0.0318 (10) 0.0118 (8) 0.0049 (8) 0.0130 (8)
N1 0.0244 (11) 0.0220 (11) 0.0314 (12) 0.0103 (9) 0.0060 (9) 0.0117 (10)
N2 0.0258 (11) 0.0195 (11) 0.0274 (12) 0.0105 (9) 0.0036 (9) 0.0108 (9)
N3 0.0279 (12) 0.0205 (11) 0.0346 (13) 0.0108 (9) 0.0022 (10) 0.0118 (10)
N4 0.0293 (13) 0.0271 (13) 0.0509 (16) 0.0102 (10) 0.0052 (12) 0.0180 (12)
C1 0.0237 (13) 0.0214 (13) 0.0272 (14) 0.0074 (11) 0.0013 (11) 0.0117 (11)
C2 0.0361 (15) 0.0189 (13) 0.0272 (14) 0.0122 (11) −0.0003 (12) 0.0056 (11)
C3 0.0446 (17) 0.0294 (15) 0.0226 (14) 0.0157 (13) 0.0009 (12) 0.0074 (12)
C4 0.0398 (16) 0.0295 (15) 0.0294 (15) 0.0150 (13) 0.0016 (12) 0.0167 (13)
C5 0.0317 (14) 0.0225 (13) 0.0345 (16) 0.0112 (11) 0.0023 (12) 0.0133 (12)
C6 0.0221 (13) 0.0219 (13) 0.0296 (14) 0.0083 (11) 0.0029 (11) 0.0109 (11)
C7 0.0225 (13) 0.0220 (13) 0.0306 (14) 0.0098 (11) 0.0064 (11) 0.0111 (11)
C8 0.060 (2) 0.0313 (16) 0.0424 (18) 0.0206 (15) 0.0217 (16) 0.0134 (15)
C9 0.0303 (14) 0.0197 (13) 0.0306 (14) 0.0112 (11) 0.0059 (11) 0.0130 (11)
C10 0.0294 (14) 0.0190 (12) 0.0308 (14) 0.0100 (11) 0.0050 (11) 0.0115 (11)
C11 0.0256 (13) 0.0232 (13) 0.0278 (14) 0.0094 (11) −0.0004 (11) 0.0091 (11)
C12 0.0292 (14) 0.0244 (14) 0.0304 (15) 0.0134 (11) 0.0000 (11) 0.0085 (12)
C13 0.0309 (15) 0.0252 (15) 0.0519 (19) 0.0127 (12) 0.0090 (14) 0.0177 (14)
C14 0.070 (3) 0.043 (2) 0.107 (3) 0.0210 (19) 0.059 (3) 0.033 (2)
C15 0.0362 (15) 0.0224 (14) 0.0328 (15) 0.0101 (12) −0.0059 (12) 0.0151 (12)
C16 0.0485 (19) 0.0257 (15) 0.0320 (16) 0.0055 (13) −0.0047 (14) 0.0122 (13)
C17 0.080 (3) 0.0287 (16) 0.0340 (17) 0.0131 (17) 0.0156 (17) 0.0123 (14)
C18 0.072 (2) 0.0325 (17) 0.044 (2) 0.0095 (17) 0.0270 (18) 0.0151 (16)
C19 0.0450 (18) 0.0246 (15) 0.0377 (17) 0.0072 (13) 0.0098 (14) 0.0128 (13)
C20 0.0314 (14) 0.0215 (13) 0.0326 (15) 0.0105 (11) −0.0001 (12) 0.0161 (12)
O2 0.0555 (13) 0.0383 (12) 0.0400 (12) 0.0330 (11) 0.0195 (10) 0.0219 (10)
S3 0.0413 (6) 0.0394 (6) 0.0431 (11) 0.0092 (5) 0.0076 (7) 0.0051 (7)
N5 0.044 (2) 0.0291 (14) 0.0327 (19) 0.0147 (16) 0.0109 (17) 0.0124 (14)
N6 0.0403 (14) 0.0231 (13) 0.0288 (13) 0.0213 (11) 0.0092 (11) 0.0122 (11)
C21 0.0387 (18) 0.0241 (14) 0.0267 (14) 0.0242 (14) 0.0103 (13) 0.0107 (12)
C22 0.0408 (18) 0.0338 (17) 0.0217 (16) 0.0308 (15) 0.0161 (13) 0.0103 (14)
C23 0.040 (2) 0.0467 (19) 0.0254 (19) 0.0306 (17) 0.0174 (15) 0.0143 (16)
C24 0.042 (3) 0.0400 (19) 0.0301 (17) 0.031 (2) 0.0099 (17) 0.0170 (15)
C25 0.060 (3) 0.0230 (17) 0.0246 (16) 0.023 (2) 0.0099 (19) 0.0104 (14)
C26 0.050 (3) 0.0226 (15) 0.0291 (17) 0.0231 (17) 0.0136 (17) 0.0116 (13)
C27 0.047 (2) 0.0216 (15) 0.037 (2) 0.0199 (15) 0.0151 (17) 0.0095 (15)
C28 0.060 (3) 0.036 (2) 0.071 (4) 0.014 (2) 0.041 (3) 0.011 (3)
S3A 0.0413 (6) 0.0394 (6) 0.0431 (11) 0.0092 (5) 0.0076 (7) 0.0051 (7)
N5A 0.044 (2) 0.0291 (14) 0.0327 (19) 0.0147 (16) 0.0109 (17) 0.0124 (14)
N6A 0.0403 (14) 0.0231 (13) 0.0288 (13) 0.0213 (11) 0.0092 (11) 0.0122 (11)
C21A 0.0387 (18) 0.0241 (14) 0.0267 (14) 0.0242 (14) 0.0103 (13) 0.0107 (12)
C22A 0.0408 (18) 0.0338 (17) 0.0217 (16) 0.0308 (15) 0.0161 (13) 0.0103 (14)
C23A 0.040 (2) 0.0467 (19) 0.0254 (19) 0.0306 (17) 0.0174 (15) 0.0143 (16)
C24A 0.042 (3) 0.0400 (19) 0.0301 (17) 0.031 (2) 0.0099 (17) 0.0170 (15)
C25A 0.060 (3) 0.0230 (17) 0.0246 (16) 0.023 (2) 0.0099 (19) 0.0104 (14)
C26A 0.050 (3) 0.0226 (15) 0.0291 (17) 0.0231 (17) 0.0136 (17) 0.0116 (13)
C27A 0.047 (2) 0.0216 (15) 0.037 (2) 0.0199 (15) 0.0151 (17) 0.0095 (15)
C28A 0.060 (3) 0.036 (2) 0.071 (4) 0.014 (2) 0.041 (3) 0.011 (3)
C29 0.0439 (17) 0.0308 (15) 0.0270 (15) 0.0225 (13) 0.0063 (13) 0.0076 (12)
C30 0.0437 (17) 0.0322 (15) 0.0267 (15) 0.0243 (13) 0.0080 (13) 0.0105 (12)
C31 0.0514 (18) 0.0339 (16) 0.0346 (16) 0.0293 (14) 0.0152 (14) 0.0186 (14)
C32 0.041 (3) 0.023 (2) 0.027 (3) 0.016 (2) 0.0091 (19) 0.0118 (19)
C32A 0.041 (3) 0.023 (2) 0.027 (3) 0.016 (2) 0.0091 (19) 0.0118 (19)
S4 0.0366 (5) 0.0262 (5) 0.0259 (5) 0.0137 (4) 0.0005 (4) 0.0104 (4)
N7 0.0230 (14) 0.0191 (12) 0.0247 (12) 0.0087 (10) 0.0093 (10) 0.0120 (10)
N8 0.0272 (17) 0.0227 (16) 0.0187 (16) 0.0118 (13) 0.0055 (12) 0.0102 (13)
C33 0.0222 (17) 0.0232 (17) 0.0217 (17) 0.0077 (14) 0.0074 (13) 0.0083 (14)
C34 0.054 (3) 0.033 (2) 0.036 (2) 0.024 (2) 0.003 (2) 0.0001 (19)
C35 0.0278 (18) 0.0218 (17) 0.0227 (19) 0.0111 (15) 0.0054 (15) 0.0092 (15)
C36 0.0316 (19) 0.0306 (19) 0.0287 (19) 0.0161 (16) 0.0084 (15) 0.0154 (16)
C37 0.0229 (17) 0.035 (2) 0.0168 (17) 0.0100 (15) 0.0023 (14) 0.0100 (16)
C38 0.036 (2) 0.031 (2) 0.029 (2) 0.0118 (17) 0.0061 (17) 0.0058 (17)
C39 0.043 (2) 0.0206 (18) 0.033 (2) 0.0149 (17) 0.0077 (17) 0.0149 (16)
C40 0.0272 (18) 0.0255 (18) 0.0216 (17) 0.0146 (15) 0.0075 (14) 0.0099 (14)
S4A 0.0366 (5) 0.0262 (5) 0.0259 (5) 0.0137 (4) 0.0005 (4) 0.0104 (4)
N7A 0.0230 (14) 0.0191 (12) 0.0247 (12) 0.0087 (10) 0.0093 (10) 0.0120 (10)
N8A 0.0272 (17) 0.0227 (16) 0.0187 (16) 0.0118 (13) 0.0055 (12) 0.0102 (13)
C33A 0.0222 (17) 0.0232 (17) 0.0217 (17) 0.0077 (14) 0.0074 (13) 0.0083 (14)
C34A 0.054 (3) 0.033 (2) 0.036 (2) 0.024 (2) 0.003 (2) 0.0001 (19)
C35A 0.0278 (18) 0.0218 (17) 0.0227 (19) 0.0111 (15) 0.0054 (15) 0.0092 (15)
C36A 0.0316 (19) 0.0306 (19) 0.0287 (19) 0.0161 (16) 0.0084 (15) 0.0154 (16)
C37A 0.0229 (17) 0.035 (2) 0.0168 (17) 0.0100 (15) 0.0023 (14) 0.0100 (16)
C38A 0.036 (2) 0.031 (2) 0.029 (2) 0.0118 (17) 0.0061 (17) 0.0058 (17)
C39A 0.043 (2) 0.0206 (18) 0.033 (2) 0.0149 (17) 0.0077 (17) 0.0149 (16)
C40A 0.0272 (18) 0.0255 (18) 0.0216 (17) 0.0146 (15) 0.0075 (14) 0.0099 (14)

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Geometric parameters (Å, º)

S1—C7 1.749 (3) S3A—C27A 1.7474
S1—C8 1.805 (3) S3A—C28A 1.799 (5)
S2—C13 1.753 (3) N5A—C27A 1.3103
S2—C14 1.805 (3) N5A—C26A 1.3998
O1—C10 1.414 (3) N6A—C29 1.321 (6)
O1—C11 1.423 (3) N6A—C27A 1.3808
N1—C7 1.314 (3) N6A—C21A 1.3843
N1—C6 1.402 (3) C21A—C22A 1.3879
N2—C7 1.377 (3) C21A—C26A 1.4038
N2—C1 1.383 (3) C22A—C23A 1.3840
N2—C9 1.460 (3) C22A—H22A 0.9500
N3—C13 1.371 (4) C23A—C24A 1.3994
N3—C20 1.383 (4) C23A—H23A 0.9500
N3—C12 1.457 (3) C24A—C25A 1.3863
N4—C13 1.317 (4) C24A—H24A 0.9500
N4—C15 1.393 (4) C25A—C26A 1.3929
C1—C2 1.388 (4) C25A—H25A 0.9500
C1—C6 1.402 (3) C28A—H28D 0.9800
C2—C3 1.383 (4) C28A—H28E 0.9800
C2—H2 0.9500 C28A—H28F 0.9800
C3—C4 1.399 (4) C29—C30 1.508 (4)
C3—H3 0.9500 C29—H29A 0.9900
C4—C5 1.392 (4) C29—H29B 0.9900
C4—H4 0.9500 C30—H30A 0.9900
C5—C6 1.392 (4) C30—H30B 0.9900
C5—H5 0.9500 C31—C32 1.495 (5)
C8—H8A 0.9800 C31—C32A 1.654 (13)
C8—H8B 0.9800 C31—H31A 0.9900
C8—H8C 0.9800 C31—H31B 0.9900
C9—C10 1.511 (4) C32—N7 1.449 (3)
C9—H9A 0.9900 C32—H32A 0.9900
C9—H9B 0.9900 C32—H32B 0.9900
C10—H10A 0.9900 C32A—N7A 1.449 (4)
C10—H10B 0.9900 C32A—H32C 0.9900
C11—C12 1.500 (3) C32A—H32D 0.9900
C11—H11A 0.9900 S4—C33 1.7540
C11—H11B 0.9900 S4—C34 1.8152
C12—H12A 0.9900 N7—C40 1.3773
C12—H12B 0.9900 N7—C33 1.3868
C14—H14A 0.9800 N8—C33 1.3081
C14—H14B 0.9800 N8—C35 1.4206
C14—H14C 0.9800 C34—H34A 0.9800
C15—C16 1.388 (4) C34—H34B 0.9800
C15—C20 1.402 (4) C34—H34C 0.9800
C16—C17 1.363 (5) C35—C36 1.3954
C16—H16 0.9500 C35—C40 1.4237
C17—C18 1.401 (4) C36—C37 1.3726
C17—H17 0.9500 C36—H36 0.9500
C18—C19 1.375 (4) C37—C38 1.4330
C18—H18 0.9500 C37—H37 0.9500
C19—C20 1.376 (4) C38—C39 1.3777
C19—H19 0.9500 C38—H38 0.9500
O2—C31 1.418 (3) C39—C40 1.3966
O2—C30 1.420 (3) C39—H39 0.9500
S3—C27 1.7474 S4A—C33A 1.7540
S3—C28 1.798 (5) S4A—C34A 1.8152
N5—C27 1.3103 N7A—C40A 1.3773
N5—C26 1.3998 N7A—C33A 1.3867
N6—C27 1.3808 N8A—C33A 1.3081
N6—C21 1.3843 N8A—C35A 1.4206
N6—C29 1.501 (3) C34A—H34D 0.9800
C21—C22 1.3879 C34A—H34E 0.9800
C21—C26 1.4038 C34A—H34F 0.9800
C22—C23 1.3839 C35A—C36A 1.3954
C22—H22 0.9500 C35A—C40A 1.4237
C23—C24 1.3994 C36A—C37A 1.3726
C23—H23 0.9500 C36A—H36A 0.9500
C24—C25 1.3863 C37A—C38A 1.4330
C24—H24 0.9500 C37A—H37A 0.9500
C25—C26 1.3930 C38A—C39A 1.3776
C25—H25 0.9500 C38A—H38A 0.9500
C28—H28A 0.9800 C39A—C40A 1.3966
C28—H28B 0.9800 C39A—H39A 0.9500
C28—H28C 0.9800
C7—S1—C8 100.14 (14) C29—N6A—C21A 127.8 (3)
C13—S2—C14 99.88 (16) C27A—N6A—C21A 106.1
C10—O1—C11 111.49 (18) N6A—C21A—C22A 131.6
C7—N1—C6 103.9 (2) N6A—C21A—C26A 105.4
C7—N2—C1 106.1 (2) C22A—C21A—C26A 123.0
C7—N2—C9 127.7 (2) C23A—C22A—C21A 116.4
C1—N2—C9 126.2 (2) C23A—C22A—H22A 121.8
C13—N3—C20 106.6 (2) C21A—C22A—H22A 121.8
C13—N3—C12 127.9 (3) C22A—C23A—C24A 121.4
C20—N3—C12 125.5 (2) C22A—C23A—H23A 119.3
C13—N4—C15 104.2 (2) C24A—C23A—H23A 119.3
N2—C1—C2 131.7 (2) C25A—C24A—C23A 122.0
N2—C1—C6 105.5 (2) C25A—C24A—H24A 119.0
C2—C1—C6 122.7 (2) C23A—C24A—H24A 119.0
C3—C2—C1 116.8 (2) C24A—C25A—C26A 117.4
C3—C2—H2 121.6 C24A—C25A—H25A 121.3
C1—C2—H2 121.6 C26A—C25A—H25A 121.3
C2—C3—C4 121.0 (3) C25A—C26A—N5A 129.7
C2—C3—H3 119.5 C25A—C26A—C21A 119.9
C4—C3—H3 119.5 N5A—C26A—C21A 110.3
C5—C4—C3 122.1 (3) N5A—C27A—N6A 114.0
C5—C4—H4 118.9 N5A—C27A—S3A 126.5
C3—C4—H4 118.9 N6A—C27A—S3A 119.5
C6—C5—C4 117.1 (2) S3A—C28A—H28D 109.5
C6—C5—H5 121.5 S3A—C28A—H28E 109.5
C4—C5—H5 121.5 H28D—C28A—H28E 109.5
C5—C6—C1 120.2 (2) S3A—C28A—H28F 109.5
C5—C6—N1 129.4 (2) H28D—C28A—H28F 109.5
C1—C6—N1 110.3 (2) H28E—C28A—H28F 109.5
N1—C7—N2 114.2 (2) N6A—C29—C30 109.5 (4)
N1—C7—S1 126.1 (2) N6—C29—C30 116.4 (2)
N2—C7—S1 119.69 (19) N6—C29—H29A 108.2
S1—C8—H8A 109.5 C30—C29—H29A 108.2
S1—C8—H8B 109.5 N6—C29—H29B 108.2
H8A—C8—H8B 109.5 C30—C29—H29B 108.2
S1—C8—H8C 109.5 H29A—C29—H29B 107.3
H8A—C8—H8C 109.5 O2—C30—C29 110.0 (2)
H8B—C8—H8C 109.5 O2—C30—H30A 109.7
N2—C9—C10 110.6 (2) C29—C30—H30A 109.7
N2—C9—H9A 109.5 O2—C30—H30B 109.7
C10—C9—H9A 109.5 C29—C30—H30B 109.7
N2—C9—H9B 109.5 H30A—C30—H30B 108.2
C10—C9—H9B 109.5 O2—C31—C32 110.8 (2)
H9A—C9—H9B 108.1 O2—C31—C32A 102.3 (3)
O1—C10—C9 108.1 (2) O2—C31—H31A 109.5
O1—C10—H10A 110.1 C32—C31—H31A 109.5
C9—C10—H10A 110.1 O2—C31—H31B 109.5
O1—C10—H10B 110.1 C32—C31—H31B 109.5
C9—C10—H10B 110.1 H31A—C31—H31B 108.1
H10A—C10—H10B 108.4 N7—C32—C31 109.8 (3)
O1—C11—C12 108.8 (2) N7—C32—H32A 109.7
O1—C11—H11A 109.9 C31—C32—H32A 109.7
C12—C11—H11A 109.9 N7—C32—H32B 109.7
O1—C11—H11B 109.9 C31—C32—H32B 109.7
C12—C11—H11B 109.9 H32A—C32—H32B 108.2
H11A—C11—H11B 108.3 N7A—C32A—C31 108.3 (7)
N3—C12—C11 113.5 (2) N7A—C32A—H32C 110.0
N3—C12—H12A 108.9 C31—C32A—H32C 110.0
C11—C12—H12A 108.9 N7A—C32A—H32D 110.0
N3—C12—H12B 108.9 C31—C32A—H32D 110.0
C11—C12—H12B 108.9 H32C—C32A—H32D 108.4
H12A—C12—H12B 107.7 C33—S4—C34 99.7
N4—C13—N3 113.6 (3) C40—N7—C33 105.9
N4—C13—S2 126.0 (2) C40—N7—C32 124.77 (17)
N3—C13—S2 120.4 (2) C33—N7—C32 129.05 (17)
S2—C14—H14A 109.5 C33—N8—C35 103.7
S2—C14—H14B 109.5 N8—C33—N7 115.1
H14A—C14—H14B 109.5 N8—C33—S4 125.9
S2—C14—H14C 109.5 N7—C33—S4 119.0
H14A—C14—H14C 109.5 S4—C34—H34A 109.5
H14B—C14—H14C 109.5 S4—C34—H34B 109.5
C16—C15—N4 130.1 (3) H34A—C34—H34B 109.5
C16—C15—C20 119.5 (3) S4—C34—H34C 109.5
N4—C15—C20 110.5 (3) H34A—C34—H34C 109.5
C17—C16—C15 117.9 (3) H34B—C34—H34C 109.5
C17—C16—H16 121.1 C36—C35—N8 129.5
C15—C16—H16 121.1 C36—C35—C40 121.0
C16—C17—C18 122.0 (3) N8—C35—C40 109.5
C16—C17—H17 119.0 C37—C36—C35 117.0
C18—C17—H17 119.0 C37—C36—H36 121.5
C19—C18—C17 121.2 (3) C35—C36—H36 121.5
C19—C18—H18 119.4 C36—C37—C38 122.1
C17—C18—H18 119.4 C36—C37—H37 118.9
C18—C19—C20 116.5 (3) C38—C37—H37 118.9
C18—C19—H19 121.8 C39—C38—C37 121.3
C20—C19—H19 121.8 C39—C38—H38 119.4
C19—C20—N3 131.9 (2) C37—C38—H38 119.4
C19—C20—C15 123.0 (3) C38—C39—C40 116.8
N3—C20—C15 105.1 (2) C38—C39—H39 121.6
C31—O2—C30 110.7 (2) C40—C39—H39 121.6
C27—S3—C28 98.26 (19) N7—C40—C39 132.2
C27—N5—C26 104.2 N7—C40—C35 105.9
C27—N6—C21 106.1 C39—C40—C35 121.8
C27—N6—C29 129.48 (13) C33A—S4A—C34A 99.7
C21—N6—C29 124.46 (13) C40A—N7A—C33A 105.9
N6—C21—C22 131.6 C40A—N7A—C32A 125.9 (5)
N6—C21—C26 105.4 C33A—N7A—C32A 127.7 (5)
C22—C21—C26 123.0 C33A—N8A—C35A 103.7
C23—C22—C21 116.4 N8A—C33A—N7A 115.1
C23—C22—H22 121.8 N8A—C33A—S4A 125.9
C21—C22—H22 121.8 N7A—C33A—S4A 119.0
C22—C23—C24 121.4 S4A—C34A—H34D 109.5
C22—C23—H23 119.3 S4A—C34A—H34E 109.5
C24—C23—H23 119.3 H34D—C34A—H34E 109.5
C25—C24—C23 122.0 S4A—C34A—H34F 109.5
C25—C24—H24 119.0 H34D—C34A—H34F 109.5
C23—C24—H24 119.0 H34E—C34A—H34F 109.5
C24—C25—C26 117.4 C36A—C35A—N8A 129.5
C24—C25—H25 121.3 C36A—C35A—C40A 121.0
C26—C25—H25 121.3 N8A—C35A—C40A 109.5
C25—C26—N5 129.7 C37A—C36A—C35A 117.0
C25—C26—C21 119.9 C37A—C36A—H36A 121.5
N5—C26—C21 110.3 C35A—C36A—H36A 121.5
N5—C27—N6 114.0 C36A—C37A—C38A 122.1
N5—C27—S3 126.5 C36A—C37A—H37A 118.9
N6—C27—S3 119.5 C38A—C37A—H37A 118.9
S3—C28—H28A 109.5 C39A—C38A—C37A 121.3
S3—C28—H28B 109.5 C39A—C38A—H38A 119.4
H28A—C28—H28B 109.5 C37A—C38A—H38A 119.4
S3—C28—H28C 109.5 C38A—C39A—C40A 116.8
H28A—C28—H28C 109.5 C38A—C39A—H39A 121.6
H28B—C28—H28C 109.5 C40A—C39A—H39A 121.6
C27A—S3A—C28A 98.3 (8) N7A—C40A—C39A 132.2
C27A—N5A—C26A 104.2 N7A—C40A—C35A 105.9
C29—N6A—C27A 125.0 (3) C39A—C40A—C35A 121.8
C7—N2—C1—C2 −177.5 (3) N6A—C21A—C22A—C23A 178.1
C9—N2—C1—C2 0.5 (4) C26A—C21A—C22A—C23A 0.3
C7—N2—C1—C6 1.4 (3) C21A—C22A—C23A—C24A 0.2
C9—N2—C1—C6 179.4 (2) C22A—C23A—C24A—C25A −0.3
N2—C1—C2—C3 178.4 (3) C23A—C24A—C25A—C26A −0.2
C6—C1—C2—C3 −0.3 (4) C24A—C25A—C26A—N5A −177.3
C1—C2—C3—C4 0.4 (4) C24A—C25A—C26A—C21A 0.7
C2—C3—C4—C5 0.0 (4) C27A—N5A—C26A—C25A 178.0
C3—C4—C5—C6 −0.4 (4) C27A—N5A—C26A—C21A −0.1
C4—C5—C6—C1 0.4 (4) N6A—C21A—C26A—C25A −179.0
C4—C5—C6—N1 −177.2 (3) C22A—C21A—C26A—C25A −0.8
N2—C1—C6—C5 −179.1 (2) N6A—C21A—C26A—N5A −0.7
C2—C1—C6—C5 −0.1 (4) C22A—C21A—C26A—N5A 177.6
N2—C1—C6—N1 −1.1 (3) C26A—N5A—C27A—N6A 0.9
C2—C1—C6—N1 177.9 (2) C26A—N5A—C27A—S3A −178.4
C7—N1—C6—C5 178.1 (3) C29—N6A—C27A—N5A 167.2 (9)
C7—N1—C6—C1 0.3 (3) C21A—N6A—C27A—N5A −1.3
C6—N1—C7—N2 0.7 (3) C29—N6A—C27A—S3A −13.5 (9)
C6—N1—C7—S1 −178.45 (19) C21A—N6A—C27A—S3A 178.0
C1—N2—C7—N1 −1.4 (3) C28A—S3A—C27A—N5A −25.4 (8)
C9—N2—C7—N1 −179.3 (2) C28A—S3A—C27A—N6A 155.3 (8)
C1—N2—C7—S1 177.80 (17) C27A—N6A—C29—C30 112.2 (6)
C9—N2—C7—S1 −0.1 (3) C21A—N6A—C29—C30 −81.8 (5)
C8—S1—C7—N1 −1.8 (3) C27—N6—C29—C30 105.3 (3)
C8—S1—C7—N2 179.1 (2) C21—N6—C29—C30 −73.6 (3)
C7—N2—C9—C10 99.1 (3) C31—O2—C30—C29 −169.6 (2)
C1—N2—C9—C10 −78.4 (3) N6A—C29—C30—O2 −61.3 (4)
C11—O1—C10—C9 −180.0 (2) N6—C29—C30—O2 −68.0 (3)
N2—C9—C10—O1 −179.5 (2) C30—O2—C31—C32 −171.2 (3)
C10—O1—C11—C12 179.9 (2) C30—O2—C31—C32A 166.8 (5)
C13—N3—C12—C11 103.6 (3) O2—C31—C32—N7 −160.5 (2)
C20—N3—C12—C11 −76.4 (3) O2—C31—C32A—N7A 175.8 (6)
O1—C11—C12—N3 −60.0 (3) C31—C32—N7—C40 80.5 (3)
C15—N4—C13—N3 0.8 (3) C31—C32—N7—C33 −106.9 (3)
C15—N4—C13—S2 −179.9 (2) C35—N8—C33—N7 0.9
C20—N3—C13—N4 −0.6 (3) C35—N8—C33—S4 −178.6
C12—N3—C13—N4 179.4 (2) C40—N7—C33—N8 −1.4
C20—N3—C13—S2 −179.87 (19) C32—N7—C33—N8 −175.1 (3)
C12—N3—C13—S2 0.1 (4) C40—N7—C33—S4 178.2
C14—S2—C13—N4 −23.2 (3) C32—N7—C33—S4 4.5 (3)
C14—S2—C13—N3 156.0 (3) C34—S4—C33—N8 −1.8
C13—N4—C15—C16 178.5 (3) C34—S4—C33—N7 178.7
C13—N4—C15—C20 −0.8 (3) C33—N8—C35—C36 177.9
N4—C15—C16—C17 −178.7 (3) C33—N8—C35—C40 −0.1
C20—C15—C16—C17 0.5 (4) N8—C35—C36—C37 −177.3
C15—C16—C17—C18 −1.6 (5) C40—C35—C36—C37 0.4
C16—C17—C18—C19 1.4 (6) C35—C36—C37—C38 0.3
C17—C18—C19—C20 −0.1 (5) C36—C37—C38—C39 −1.0
C18—C19—C20—N3 178.7 (3) C37—C38—C39—C40 0.9
C18—C19—C20—C15 −1.0 (4) C33—N7—C40—C39 −176.9
C13—N3—C20—C19 −179.6 (3) C32—N7—C40—C39 −2.8 (3)
C12—N3—C20—C19 0.4 (4) C33—N7—C40—C35 1.1
C13—N3—C20—C15 0.0 (3) C32—N7—C40—C35 175.2 (3)
C12—N3—C20—C15 −180.0 (2) C38—C39—C40—N7 177.7
C16—C15—C20—C19 0.8 (4) C38—C39—C40—C35 −0.1
N4—C15—C20—C19 −179.8 (2) C36—C35—C40—N7 −178.8
C16—C15—C20—N3 −178.9 (2) N8—C35—C40—N7 −0.7
N4—C15—C20—N3 0.4 (3) C36—C35—C40—C39 −0.6
C27—N6—C21—C22 −176.9 N8—C35—C40—C39 177.6
C29—N6—C21—C22 2.2 (2) C31—C32A—N7A—C40A −75.9 (9)
C27—N6—C21—C26 1.1 C31—C32A—N7A—C33A 94.9 (7)
C29—N6—C21—C26 −179.8 (2) C35A—N8A—C33A—N7A 0.9
N6—C21—C22—C23 178.1 C35A—N8A—C33A—S4A −178.6
C26—C21—C22—C23 0.3 C40A—N7A—C33A—N8A −1.4
C21—C22—C23—C24 0.2 C32A—N7A—C33A—N8A −173.6 (8)
C22—C23—C24—C25 −0.3 C40A—N7A—C33A—S4A 178.2
C23—C24—C25—C26 −0.2 C32A—N7A—C33A—S4A 6.0 (8)
C24—C25—C26—N5 −177.3 C34A—S4A—C33A—N8A −1.8
C24—C25—C26—C21 0.7 C34A—S4A—C33A—N7A 178.7
C27—N5—C26—C25 178.0 C33A—N8A—C35A—C36A 177.9
C27—N5—C26—C21 −0.1 C33A—N8A—C35A—C40A −0.1
N6—C21—C26—C25 −179.0 N8A—C35A—C36A—C37A −177.3
C22—C21—C26—C25 −0.8 C40A—C35A—C36A—C37A 0.4
N6—C21—C26—N5 −0.7 C35A—C36A—C37A—C38A 0.3
C22—C21—C26—N5 177.6 C36A—C37A—C38A—C39A −1.0
C26—N5—C27—N6 0.9 C37A—C38A—C39A—C40A 0.9
C26—N5—C27—S3 −178.4 C33A—N7A—C40A—C39A −176.9
C21—N6—C27—N5 −1.3 C32A—N7A—C40A—C39A −4.4 (8)
C29—N6—C27—N5 179.6 (2) C33A—N7A—C40A—C35A 1.1
C21—N6—C27—S3 178.0 C32A—N7A—C40A—C35A 173.6 (8)
C29—N6—C27—S3 −1.0 (2) C38A—C39A—C40A—N7A 177.7
C28—S3—C27—N5 −23.16 (19) C38A—C39A—C40A—C35A −0.1
C28—S3—C27—N6 157.56 (19) C36A—C35A—C40A—N7A −178.8
C29—N6A—C21A—C22A 15.0 (9) N8A—C35A—C40A—N7A −0.7
C27A—N6A—C21A—C22A −176.9 C36A—C35A—C40A—C39A −0.6
C29—N6A—C21A—C26A −166.9 (9) N8A—C35A—C40A—C39A 177.6
C27A—N6A—C21A—C26A 1.1

1,1'-[Oxybis(ethane-2,1-diyl)]bis(2-methylsulfanyl-1H-benzo[d]imidazole) . Hydrogen-bond geometry (Å, º)

Cg1, Cg5 and Cg11 are the centroids of the N5/C26/C21/N6/C27, the C21-C26 and the C1–C6 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2···Cg5i 0.95 2.71 3.583 (3) 153
C11—H11B···Cg11ii 0.99 2.74 3.423 (3) 126
C29—H29B···Cg1iii 0.99 2.70 3.489 (3) 137
C34—H34B···N4iv 0.98 2.50 3.398 (3) 153

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x+1, −y+2, −z+1.

References

  1. Abou, A., Bany, G. E., Kakou-Yao, R., Seikou, T. & Ebby, N. D. (2007). Acta Cryst. E63, o4218.
  2. Akonan, L., Molou, K. Y. G., Adohi-Krou, A., Abou, A. & Tenon, A. J. (2010). Acta Cryst. E66, o442. [DOI] [PMC free article] [PubMed]
  3. Algul, O., Mete, B., Turkmenoglu, B., Saglamtas, R., Alagoz, M. A., Dogen, A., Gulcin, I. & Burmaoglu, S. (2025). J. Mol. Struct.1323, 140800.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2015). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hammal, L., Bentarzi, Y., Kaoua, R., Bakhta, S., Nedjar-Kolli, B., Andre, C. & Hoffmann, P. (2008). J. Soc. Alger. Chim.18, 45–54.
  8. Hasty, S. J., Bandara, M. D., Rath, N. P. & Demchenko, A. V. (2017). J. Org. Chem.82, 1904–1911. [DOI] [PMC free article] [PubMed]
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Missioui, M., Mortada, S., Guerrab, W., Demirtaş, G., Mague, J. T., Ansar, M., El Abbes Faouzi, M., Essassi, E. M., Mehdar, Y. T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022). Ara. J. Chem.15, 103851.
  11. Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z. & Ahmed, S. A. (2022). Process Biochem.120, 250–259.
  12. Rajakannu, P., Elumalai, P., Mobin, S. M., Lu, K.-L. & Sathiyendiran, M. (2013). J. Organomet. Chem.743, 17–23.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  17. Steinke, T., Engelage, E. & Huber, S. M. (2023). Acta Cryst. C79, 26–35. [DOI] [PMC free article] [PubMed]
  18. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  19. Yadav, S., Narasimhan, B., Lim, S. M., Ramasamy, K., Vasudevan, M., Shah, S. A. A. & Mathur, A. (2018). Egypt. J. Basic Appl. Sci.5, 100-109.
  20. Yüksektepe, Ç., Çalışkan, N., Genç, M., Servi, S. & Büyükgüngör, O. (2007). Acta Cryst. E63, o100–o102.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989025003809/vm2313sup1.cif

e-81-00464-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025003809/vm2313Isup2.hkl

e-81-00464-Isup2.hkl (828.9KB, hkl)
e-81-00464-Isup3.cml (7.7KB, cml)

Supporting information file. DOI: 10.1107/S2056989025003809/vm2313Isup3.cml

CCDC reference: 2447131

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES