Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 May 2;81(Pt 6):469–472. doi: 10.1107/S2056989025003755

Synthesis and crystal structure of 3-(2-{3-[2-(2-oxooxazolidin-3-yl)eth­oxy]quinoxalin-2-yl­oxy}eth­yl)oxazolidin-2-one

Fatima Ezzahra Aboutofil a, Nour El Hoda Mustaphi a,*, Olivier Blacque b, Tuncer Hökelek c, Ahmed Mazzah d, Lhoussaine El Ghayati a, Nada Kheira Sebbar e,f
Editor: W T A Harrisong
PMCID: PMC12142413  PMID: 40487685

In the title compound, one of the oxazolidine rings adopts a twisted conformation and the other is a shallow envelope. In the crystal, weak C—H⋯O hydrogen bonds and π–π stacking inter­actions help to consolidate a three-dimensional architecture.

Keywords: crystal structure, hydrogen bond, π-stacking, quinoxaline

Abstract

In the title compound, C18H20N4O6, one of the oxazolidine rings adopts a twisted conformation and the other is a shallow envelope. In the crystal, weak C—H⋯O hydrogen bonds and π–π stacking inter­actions help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (48.4%) and H⋯O/O⋯H (29.1%) contacts.

1. Chemical context

Quinoxaline and its derivatives are widely used in various fields, including medicine (Kaushal et al., 2019; Montana et al., 2019), pharmacology, mol­ecular biology, neuroscience, immunology, microbiology, agriculture, chemistry, toxicology, materials science, and biochemistry (Balderas-Renteria et al., 2012; Pereira et al., 2015; Zeb et al., 2014; Tangherlini et al., 2019; Vieira et al., 2014; Zheng et al., 2002).

The quinoxaline mol­ecule has been utilized as a precursor for synthesizing bioactive derivatives, with several research teams emphasizing its potential applications in the pharmaceutical and therapeutic fields (Raoa et al., 2010; Yousra et al., 2023). Different synthesis methodologies have been detailed in the literature, reflecting extensive research efforts to elucidate these compounds’ properties and applications (e.g., Gu et al., 2017). Building on our previous research into the synthesis of quinoxaline derivatives (Yousra et al., 2023), we have synthesized the title compound, C18H20N4O6 (I), and we now describe its synthesis, crystal structure and Hirshfeld surface.1.

2. Structural commentary

Compound (I) contains an almost planar quinoxaline fused ring and two oxazolidine rings (Fig. 1), where the oxazolidine (C, N3/O3/C13–C15) and (D, N4/O5/C16–C18) rings are in half-chair [with a puckering parameter value of φ = 305.0 (4)°] and shallow envelope conformations, respectively. In ring D, atom N4 is at the flap position and is 0.0849 (11) Å away from the best least-squares plane of the other four atoms. The almost planar A (N1/N2/C3–C6) and B (C5–C10) rings are oriented at a dihedral angle of 1.46 (4)°. Atoms O1, O2 and C11 are −0.094 (1), 0.059 (1) and 0.070 (1) Å, respectively, away from the best least-squares plane of ring A. The side chains both have antigauche conformations as indicated by the following torsion angles: C3—O1—C2—C1 = −162.00 (10), O1—C2—C1—N3 = −55.36 (14), C4—O2—C11—C12 = −174.35 (9) and O2—C11—C12—N4 = −57.76 (13)°. The dihedral angles between the quinoxaline ring and the pendant oxazolidine C and D rings (all atoms) are 85.72 (6) and 56.91 (7)°, respectively; the equivalent angle between the oxazolidine rings is 89.98 (9)°.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule with 50% probability ellipsoids.

3. Supra­molecular features

In the crystal structure of (I), the molecules are linked by C—H⋯O hydrogen bonds (Table 1 and Fig. 2). Aromatic π–π stacking inter­actions between the quinoxaline A and B rings of adjacent mol­ecules with a shortest inter­centroid distance of 3.5155 (7) Å may help to consolidate the packing. No C—H⋯π inter­actions could be identified.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O6i 0.99 2.37 3.189 (2) 140
C10—H10⋯O5ii 0.95 2.56 3.4935 (18) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram viewed down the a-axis direction. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Spackman et al., 2021) to investigate the inter­molecular inter­actions in the crystal of (I). The HS is shown in Fig. 3, where the bright-red spots correspond to the respective donors and/or acceptors. According to the two-dimensional fingerprint plots (McKinnon et al., 2007), the inter­molecular H⋯H and H⋯O/O⋯H contacts make the most important contributions to the HS of 48.4% and 29.1%, respectively (Fig. 4). All other contact types contribute 5% or less to the surface.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.

Figure 4.

Figure 4

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) C⋯C, (e) H⋯C/C⋯H, (f) H⋯N/N⋯H, (g) C⋯N/N⋯C, (h) C⋯O/O⋯C, (i) N⋯N, (j) N⋯O/O⋯N and (k) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD) (Groom et al., 2016; updated to January 2024) using the search fragment (II) yielded 25 hits of which those most similar to the title mol­ecule have the formula (III) with R = Me and R′ = CH2CO2H (CSD refcode DEZJAW; Missioui et al., 2018) or benzyl (DUSHUV; Ramli et al., 2010) with R = CF3 and R′ = i-Bu (DUBPUO; Wei et al., 2019), with R = Ph and R′ = CH2 (cyclo-CHCH2O) and R′ = benzyl (PUGGII; Benzeid et al., 2009). As expected, in all these hits, the di­hydro­quinoxaline ring system is essentially planar with the dihedral angle between the constituent rings being less than 1° or having the nitro­gen atom bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms.5.

6. Synthesis and crystallization

A solution of quinoxaline-2,3-dione (0.29 g, 1.00 mmol) in di­methyl­formamide (15 ml) was prepared. To this solution, tetra-n-butyl­ammonium bromide (0.1 mmol), 2.2 equivalents of bis­(2-chloro­eth­yl)amine hydro­chloride, and 2.00 equivalents of potassium carbonate were added. The mixture was stirred at 353 K for 6 h. After stirring, the salts were removed by filtration, and the solution was evaporated under reduced pressure. The resulting residue was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water. The mixture obtained was then chromatographed on a silica gel column using an eluent of ethyl acetate and hexane in a 4:1 ratio. The solid isolate was recrystallized from an ethanol solution, resulting in crystals of (I) with a yield of 56%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound hydrogen-atom positions were calculated geometrically at distances of 0.95 Å (for aromatic CH) and 0.99 Å (for CH2) and they were refined using a riding model by applying the constraint Uiso(H) = 1.2Ueq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C18H20N4O6
M r 388.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 160
a, b, c (Å) 6.6576 (1), 17.1463 (2), 15.8105 (2)
β (°) 98.935 (1)
V3) 1782.92 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.93
Crystal size (mm) 0.25 × 0.21 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2024)
Tmin, Tmax 0.845, 0.932
No. of measured, independent and observed [I > 2σ(I)] reflections 23056, 3781, 3577
R int 0.027
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.06
No. of reflections 3781
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.29

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025003755/hb8134sup1.cif

e-81-00469-sup1.cif (790.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025003755/hb8134Isup2.hkl

e-81-00469-Isup2.hkl (301.6KB, hkl)
e-81-00469-Isup3.cdx (3.6KB, cdx)

Supporting information file. DOI: 10.1107/S2056989025003755/hb8134Isup3.cdx

e-81-00469-Isup4.cml (7.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025003755/hb8134Isup4.cml

CCDC reference: 2447382

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

supplementary crystallographic information

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Crystal data

C18H20N4O6 F(000) = 816
Mr = 388.38 Dx = 1.447 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 6.6576 (1) Å Cell parameters from 17516 reflections
b = 17.1463 (2) Å θ = 3.8–79.5°
c = 15.8105 (2) Å µ = 0.93 mm1
β = 98.935 (1)° T = 160 K
V = 1782.92 (4) Å3 Plate, colourless
Z = 4 0.25 × 0.21 × 0.10 mm

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3781 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 3577 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.0000 pixels mm-1 θmax = 77.4°, θmin = 3.8°
ω scans h = −8→8
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2024) k = −21→21
Tmin = 0.845, Tmax = 0.932 l = −17→19
23056 measured reflections

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6483P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.35 e Å3
3781 reflections Δρmin = −0.29 e Å3
254 parameters Extinction correction: SHELXL2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0023 (2)
Primary atom site location: dual

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.34531 (13) 0.47199 (5) 0.72202 (5) 0.02841 (19)
O2 0.29395 (12) 0.35049 (4) 0.62370 (5) 0.02608 (19)
O3 0.35795 (16) 0.33324 (6) 0.96229 (7) 0.0444 (3)
O4 0.66392 (15) 0.37070 (6) 0.93404 (7) 0.0451 (3)
O5 0.74284 (18) 0.16514 (7) 0.76528 (7) 0.0527 (3)
O6 0.62002 (19) 0.11202 (8) 0.63787 (7) 0.0587 (3)
N1 0.28423 (15) 0.55758 (6) 0.60819 (6) 0.0269 (2)
N2 0.25336 (14) 0.42434 (6) 0.50000 (6) 0.0253 (2)
N3 0.37902 (16) 0.44689 (6) 0.89855 (7) 0.0322 (2)
N4 0.44993 (17) 0.20867 (6) 0.69704 (7) 0.0331 (2)
C1 0.4760 (2) 0.51244 (7) 0.86354 (8) 0.0342 (3)
H1A 0.616539 0.497667 0.857060 0.041*
H1B 0.484189 0.556502 0.904393 0.041*
C2 0.3645 (2) 0.53887 (7) 0.77796 (8) 0.0328 (3)
H2A 0.228380 0.559210 0.784233 0.039*
H2B 0.441442 0.580793 0.754216 0.039*
C3 0.30273 (16) 0.48736 (7) 0.63769 (7) 0.0252 (2)
C4 0.28227 (16) 0.41917 (6) 0.58255 (7) 0.0241 (2)
C5 0.23938 (16) 0.49903 (7) 0.46633 (8) 0.0261 (2)
C6 0.25158 (16) 0.56504 (7) 0.51985 (8) 0.0266 (2)
C7 0.23349 (18) 0.64004 (7) 0.48354 (9) 0.0316 (3)
H7 0.240283 0.684707 0.519426 0.038*
C8 0.20594 (18) 0.64869 (8) 0.39597 (9) 0.0354 (3)
H8 0.193559 0.699445 0.371627 0.043*
C9 0.19602 (19) 0.58335 (8) 0.34250 (9) 0.0358 (3)
H9 0.178341 0.590080 0.282161 0.043*
C10 0.21172 (18) 0.50923 (8) 0.37678 (8) 0.0314 (3)
H10 0.203901 0.465090 0.340091 0.038*
C11 0.27737 (18) 0.28136 (6) 0.57133 (7) 0.0266 (2)
H11A 0.395000 0.277258 0.540209 0.032*
H11B 0.151217 0.282899 0.528962 0.032*
C12 0.27329 (19) 0.21297 (7) 0.63101 (8) 0.0298 (3)
H12A 0.149795 0.216567 0.658525 0.036*
H12B 0.263947 0.164211 0.597081 0.036*
C13 0.4844 (2) 0.38405 (7) 0.93076 (8) 0.0335 (3)
C14 0.1517 (2) 0.36156 (10) 0.94072 (11) 0.0483 (4)
H14A 0.077858 0.356549 0.990193 0.058*
H14B 0.077252 0.332043 0.891836 0.058*
C15 0.1730 (2) 0.44643 (9) 0.91721 (10) 0.0429 (3)
H15A 0.073565 0.461243 0.866518 0.051*
H15B 0.157556 0.481479 0.965547 0.051*
C16 0.6022 (2) 0.15857 (8) 0.69375 (8) 0.0366 (3)
C17 0.6778 (4) 0.22219 (12) 0.82074 (12) 0.0720 (6)
H17A 0.773792 0.266660 0.828125 0.086*
H17B 0.670734 0.199276 0.877681 0.086*
C18 0.4690 (3) 0.24899 (9) 0.77867 (9) 0.0520 (4)
H18A 0.361999 0.232637 0.811984 0.062*
H18B 0.463720 0.306297 0.771004 0.062*

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0383 (5) 0.0205 (4) 0.0264 (4) 0.0002 (3) 0.0047 (3) −0.0015 (3)
O2 0.0325 (4) 0.0185 (4) 0.0268 (4) 0.0001 (3) 0.0032 (3) 0.0000 (3)
O3 0.0531 (6) 0.0357 (5) 0.0436 (5) −0.0012 (4) 0.0054 (4) 0.0096 (4)
O4 0.0414 (6) 0.0437 (6) 0.0480 (6) 0.0111 (4) −0.0001 (4) 0.0032 (5)
O5 0.0546 (7) 0.0533 (6) 0.0442 (6) 0.0125 (5) −0.0111 (5) 0.0030 (5)
O6 0.0615 (7) 0.0665 (8) 0.0468 (6) 0.0281 (6) 0.0044 (5) −0.0123 (6)
N1 0.0261 (5) 0.0223 (5) 0.0326 (5) 0.0002 (4) 0.0051 (4) 0.0015 (4)
N2 0.0236 (5) 0.0241 (5) 0.0280 (5) 0.0001 (3) 0.0028 (4) 0.0012 (4)
N3 0.0364 (6) 0.0299 (5) 0.0304 (5) 0.0043 (4) 0.0053 (4) 0.0020 (4)
N4 0.0451 (6) 0.0238 (5) 0.0285 (5) 0.0043 (4) −0.0010 (4) −0.0016 (4)
C1 0.0425 (7) 0.0263 (6) 0.0330 (6) −0.0020 (5) 0.0034 (5) −0.0029 (5)
C2 0.0464 (7) 0.0216 (5) 0.0300 (6) 0.0009 (5) 0.0051 (5) −0.0039 (5)
C3 0.0233 (5) 0.0232 (5) 0.0295 (6) 0.0001 (4) 0.0054 (4) 0.0003 (4)
C4 0.0220 (5) 0.0207 (5) 0.0297 (6) 0.0002 (4) 0.0047 (4) 0.0011 (4)
C5 0.0202 (5) 0.0262 (6) 0.0318 (6) −0.0001 (4) 0.0042 (4) 0.0044 (4)
C6 0.0204 (5) 0.0255 (6) 0.0342 (6) 0.0005 (4) 0.0053 (4) 0.0042 (4)
C7 0.0263 (6) 0.0252 (6) 0.0436 (7) 0.0005 (4) 0.0061 (5) 0.0059 (5)
C8 0.0275 (6) 0.0324 (6) 0.0464 (7) 0.0019 (5) 0.0057 (5) 0.0153 (5)
C9 0.0300 (6) 0.0417 (7) 0.0354 (6) 0.0012 (5) 0.0042 (5) 0.0130 (5)
C10 0.0281 (6) 0.0348 (6) 0.0310 (6) −0.0006 (5) 0.0032 (5) 0.0040 (5)
C11 0.0305 (6) 0.0205 (5) 0.0280 (5) −0.0003 (4) 0.0024 (4) −0.0025 (4)
C12 0.0343 (6) 0.0217 (5) 0.0328 (6) −0.0017 (4) 0.0032 (5) −0.0002 (4)
C13 0.0436 (7) 0.0298 (6) 0.0257 (6) 0.0017 (5) 0.0007 (5) −0.0019 (5)
C14 0.0453 (8) 0.0538 (9) 0.0464 (8) −0.0081 (7) 0.0084 (6) 0.0063 (7)
C15 0.0377 (7) 0.0479 (8) 0.0438 (8) 0.0052 (6) 0.0090 (6) 0.0029 (6)
C16 0.0415 (7) 0.0344 (7) 0.0331 (6) 0.0043 (5) 0.0033 (5) 0.0041 (5)
C17 0.1003 (15) 0.0538 (10) 0.0487 (9) 0.0250 (10) −0.0297 (10) −0.0142 (8)
C18 0.0775 (11) 0.0436 (8) 0.0309 (7) 0.0155 (8) −0.0045 (7) −0.0085 (6)

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Geometric parameters (Å, º)

O1—C2 1.4416 (14) C5—C6 1.4079 (17)
O1—C3 1.3454 (14) C5—C10 1.4100 (17)
O2—C4 1.3418 (13) C6—C7 1.4057 (16)
O2—C11 1.4403 (13) C7—H7 0.9500
O3—C13 1.3589 (17) C7—C8 1.3762 (19)
O3—C14 1.447 (2) C8—H8 0.9500
O4—C13 1.2101 (17) C8—C9 1.399 (2)
O5—C16 1.3563 (17) C9—H9 0.9500
O5—C17 1.425 (2) C9—C10 1.3792 (18)
O6—C16 1.2100 (18) C10—H10 0.9500
N1—C3 1.2901 (15) C11—H11A 0.9900
N1—C6 1.3857 (16) C11—H11B 0.9900
N2—C4 1.2924 (15) C11—C12 1.5080 (16)
N2—C5 1.3846 (15) C12—H12A 0.9900
N3—C1 1.4483 (17) C12—H12B 0.9900
N3—C13 1.3421 (16) C14—H14A 0.9900
N3—C15 1.4474 (18) C14—H14B 0.9900
N4—C12 1.4480 (16) C14—C15 1.514 (2)
N4—C16 1.3359 (17) C15—H15A 0.9900
N4—C18 1.4522 (17) C15—H15B 0.9900
C1—H1A 0.9900 C17—H17A 0.9900
C1—H1B 0.9900 C17—H17B 0.9900
C1—C2 1.5084 (18) C17—C18 1.516 (3)
C2—H2A 0.9900 C18—H18A 0.9900
C2—H2B 0.9900 C18—H18B 0.9900
C3—C4 1.4521 (15)
C3—O1—C2 115.92 (9) C5—C10—H10 120.0
C4—O2—C11 116.75 (9) C9—C10—C5 119.93 (12)
C13—O3—C14 108.53 (11) C9—C10—H10 120.0
C16—O5—C17 109.50 (12) O2—C11—H11A 110.4
C3—N1—C6 116.22 (10) O2—C11—H11B 110.4
C4—N2—C5 116.25 (10) O2—C11—C12 106.71 (9)
C13—N3—C1 122.03 (11) H11A—C11—H11B 108.6
C13—N3—C15 111.99 (11) C12—C11—H11A 110.4
C15—N3—C1 125.10 (11) C12—C11—H11B 110.4
C12—N4—C18 124.44 (11) N4—C12—C11 113.52 (10)
C16—N4—C12 122.74 (11) N4—C12—H12A 108.9
C16—N4—C18 112.25 (11) N4—C12—H12B 108.9
N3—C1—H1A 109.0 C11—C12—H12A 108.9
N3—C1—H1B 109.0 C11—C12—H12B 108.9
N3—C1—C2 112.93 (11) H12A—C12—H12B 107.7
H1A—C1—H1B 107.8 O4—C13—O3 121.80 (12)
C2—C1—H1A 109.0 O4—C13—N3 128.51 (13)
C2—C1—H1B 109.0 N3—C13—O3 109.68 (12)
O1—C2—C1 107.19 (10) O3—C14—H14A 110.7
O1—C2—H2A 110.3 O3—C14—H14B 110.7
O1—C2—H2B 110.3 O3—C14—C15 105.00 (12)
C1—C2—H2A 110.3 H14A—C14—H14B 108.8
C1—C2—H2B 110.3 C15—C14—H14A 110.7
H2A—C2—H2B 108.5 C15—C14—H14B 110.7
O1—C3—C4 115.02 (10) N3—C15—C14 100.55 (11)
N1—C3—O1 122.32 (10) N3—C15—H15A 111.7
N1—C3—C4 122.65 (11) N3—C15—H15B 111.7
O2—C4—C3 115.00 (10) C14—C15—H15A 111.7
N2—C4—O2 122.56 (10) C14—C15—H15B 111.7
N2—C4—C3 122.44 (10) H15A—C15—H15B 109.4
N2—C5—C6 121.22 (10) O6—C16—O5 122.03 (13)
N2—C5—C10 119.43 (11) O6—C16—N4 127.85 (13)
C6—C5—C10 119.35 (11) N4—C16—O5 110.11 (12)
N1—C6—C5 121.12 (10) O5—C17—H17A 110.4
N1—C6—C7 119.09 (11) O5—C17—H17B 110.4
C7—C6—C5 119.78 (11) O5—C17—C18 106.47 (13)
C6—C7—H7 120.0 H17A—C17—H17B 108.6
C8—C7—C6 119.93 (12) C18—C17—H17A 110.4
C8—C7—H7 120.0 C18—C17—H17B 110.4
C7—C8—H8 119.7 N4—C18—C17 101.14 (13)
C7—C8—C9 120.54 (11) N4—C18—H18A 111.5
C9—C8—H8 119.7 N4—C18—H18B 111.5
C8—C9—H9 119.8 C17—C18—H18A 111.5
C10—C9—C8 120.46 (12) C17—C18—H18B 111.5
C10—C9—H9 119.8 H18A—C18—H18B 109.4
O1—C3—C4—O2 4.66 (14) C6—C5—C10—C9 −0.28 (17)
O1—C3—C4—N2 −175.86 (10) C6—C7—C8—C9 −0.10 (18)
O2—C11—C12—N4 −57.76 (13) C7—C8—C9—C10 0.64 (19)
O3—C14—C15—N3 19.93 (15) C8—C9—C10—C5 −0.44 (19)
O5—C17—C18—N4 −6.2 (2) C10—C5—C6—N1 −178.23 (10)
N1—C3—C4—O2 −176.22 (10) C10—C5—C6—C7 0.82 (16)
N1—C3—C4—N2 3.25 (18) C11—O2—C4—N2 1.41 (15)
N1—C6—C7—C8 178.43 (10) C11—O2—C4—C3 −179.12 (9)
N2—C5—C6—N1 1.99 (16) C12—N4—C16—O5 −177.58 (11)
N2—C5—C6—C7 −178.96 (10) C12—N4—C16—O6 1.4 (2)
N2—C5—C10—C9 179.50 (11) C12—N4—C18—C17 178.95 (14)
N3—C1—C2—O1 −55.36 (14) C13—O3—C14—C15 −17.07 (15)
C1—N3—C13—O3 177.45 (11) C13—N3—C1—C2 132.78 (12)
C1—N3—C13—O4 −2.1 (2) C13—N3—C15—C14 −17.38 (15)
C1—N3—C15—C14 173.26 (12) C14—O3—C13—O4 −173.94 (13)
C2—O1—C3—N1 1.41 (16) C14—O3—C13—N3 6.47 (15)
C2—O1—C3—C4 −179.46 (10) C15—N3—C1—C2 −58.87 (16)
C3—O1—C2—C1 −162.00 (10) C15—N3—C13—O3 7.71 (15)
C3—N1—C6—C5 0.10 (16) C15—N3—C13—O4 −171.84 (14)
C3—N1—C6—C7 −178.95 (10) C16—O5—C17—C18 3.4 (2)
C4—O2—C11—C12 −174.35 (9) C16—N4—C12—C11 −102.91 (14)
C4—N2—C5—C6 −1.41 (16) C16—N4—C18—C17 7.40 (18)
C4—N2—C5—C10 178.81 (10) C17—O5—C16—O6 −177.74 (17)
C5—N2—C4—O2 178.41 (9) C17—O5—C16—N4 1.34 (19)
C5—N2—C4—C3 −1.03 (16) C18—N4—C12—C11 86.40 (16)
C5—C6—C7—C8 −0.63 (17) C18—N4—C16—O5 −5.86 (17)
C6—N1—C3—O1 176.48 (9) C18—N4—C16—O6 173.16 (16)
C6—N1—C3—C4 −2.57 (16)

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O6i 0.99 2.37 3.189 (2) 140
C10—H10···O5ii 0.95 2.56 3.4935 (18) 168

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2.

References

  1. Balderas-Renteria, I., Gonzalez-Barranco, P., Garcia, A., Banik, B. K. & Rivera, G. (2012). Curr. Med. Chem.19, 4377–4398. [DOI] [PubMed]
  2. Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gu, W., Wang, S., Jin, X., Zhang, Y., Hua, D., Miao, T., Tao, X. & Wang, S. (2017). Molecules, 22, 1154. [DOI] [PMC free article] [PubMed]
  6. Kaushal, T., Srivastava, G., Sharma, A. & Singh Negi, A. (2019). Bioorg. Med. Chem.27, 16–35. [DOI] [PubMed]
  7. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  8. Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCrData3, x180882.
  9. Montana, M., Mathias, F., Terme, T. & Vanelle, P. (2019). Eur. J. Med. Chem.163, 136–147. [DOI] [PubMed]
  10. Pereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). Eur. J. Med. Chem.97, 664–672. [DOI] [PubMed]
  11. Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010). Acta Cryst. E66, o1922. [DOI] [PMC free article] [PubMed]
  12. Raoa, G. K., Kotnal, R. B. & Sanjay Paib, P. N. (2010). J. Chem. Pharm. Res. 2, 368–373.
  13. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  17. Tangherlini, G., Kalinin, D. V., Schepmann, D., Che, T., Mykicki, N., Ständer, S., Loser, K. & Wünsch, B. (2019). J. Med. Chem.62, 893–907. [DOI] [PubMed]
  18. Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res.169, 287–293. [DOI] [PubMed]
  19. Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal.361, 5490–5498.
  20. Yousra, S., El Ghayati, L., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y. & Sebbar, N. K. (2023). Acta Cryst. E79, 895–898. [DOI] [PMC free article] [PubMed]
  21. Zeb, A., Hameed, A., Khan, L., Khan, I. K., Dalvandi, K., Choudhary, M. I. & Basha, F. Z. (2014). Med. Chem.10, 724–729. [DOI] [PubMed]
  22. Zheng, H., Jiang, C., Chiu, M. H., Covey, J. M. & Chan, K. K. (2002). Drug Metab. Dispos.30, 344–348. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025003755/hb8134sup1.cif

e-81-00469-sup1.cif (790.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025003755/hb8134Isup2.hkl

e-81-00469-Isup2.hkl (301.6KB, hkl)
e-81-00469-Isup3.cdx (3.6KB, cdx)

Supporting information file. DOI: 10.1107/S2056989025003755/hb8134Isup3.cdx

e-81-00469-Isup4.cml (7.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025003755/hb8134Isup4.cml

CCDC reference: 2447382

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES