Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 May 23;81(Pt 6):543–548. doi: 10.1107/S2056989025004426

Crystal structure and Hirshfeld surface analysis of dimethyl 3-methyl-8-{[4-(tri­fluoro­meth­yl)phen­yl]sulfon­yl}-7,8-di­hydro-4H-4,6a-ep­oxy­benzo[b]naphtho­[1,8-de]azepine-5,6-di­carboxyl­ate

Gleb M Burkin a, Selbi Annadurdyyeva a, Alexandra G Kutasevich a, Narmina A Guliyeva b, Khudayar I Hasanov c, Mehmet Akkurt d, Gizachew Mulugeta Manahelohe e,*
Editor: X Haof
PMCID: PMC12142415  PMID: 40487686

In the crystal, mol­ecules are linked by C—H⋯O inter­actions and C—H⋯F inter­actions to form sheets parallel to the (002) plane. In addition, S—O⋯π and π–π inter­actions link mol­ecules along the a-axis direction. van der Waals inter­actions between mol­ecular sheets consolidate the packing.

Keywords: crystal structure, disorder, acyl­ation, furan, sulfonamide, 4+2 cycloaddition, weak inter­actions, Hirshfeld surface analysis

Abstract

The mol­ecular conformation of the title compound, C29H22F3NO7S, is stable due to the intra­molecular C—H⋯O hydrogen bonds. The central seven-membered ring adopts a distorted chair form. In the 7-oxabi­cyclo­[2.2.1]hepta-2,5-diene unit, the five-membered rings adopt envelope conformations. In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯F inter­actions, forming sheets parallel to the (002) plane. Additionally, S—O⋯π and π–π inter­actions [centroid-to-centroid distance = 3.6159 (7) Å] connect the mol­ecules along the a-axis direction. van der Waals inter­actions between the mol­ecular sheets reinforce the mol­ecular packing. A Hirshfeld surface analysis was conducted to visualize the various inter­molecular inter­actions, indicating that the largest contribution to the surface contacts is from H⋯H inter­actions (37.3%), followed by O⋯H/H⋯O (24.1%), F⋯H/H⋯F (19.0%), and C⋯H/H⋯C (10.3%) inter­actions.

1. Chemical context

7-Oxabi­cyclo­[2.2.1]heptenes, products of the thermic reaction between furans and alkenes or alkynes, have great synthetic potential as a useful tool for the design of a broad diversity of substances with various practical properties. For example, these scaffolds can be used in the synthesis of polycyclic arenes – fragments of graphene – and serve as models for new carbon-based electronic materials (Eda et al., 2015; Criado et al., 2013; Furrer et al., 2013). The 7-oxabi­cyclo­[2.2.1]heptane moiety annelated with other rings serves as a scaffold for the preparation of mol­ecular tweezers (Murphy et al., 2016; Warrener et al., 1999), supra­molecular systems (Chou et al., 2015; Oh et al., 2010; Eckert-Maksić et al., 2005), bridging donor–acceptor mol­ecules (Chakrabarti et al., 2007), various bioactive and natural products (Roscalesa et al., 2017; Enev et al., 2012; Gromov et al., 2009; Schindler et al., 2009; Vogel et al., 1999), high-mol­ecular-weight materials (Margetić et al., 2010; Warrener et al., 2001; Vogel et al., 1999), etc. Under acid catalysis and temperature, cyclo­addition inter­mediates can be converted into phenols, cyclo­hexenoles, or substituted aromatic hydro­carbons (Zaytsev et al., 2019; Zubkov et al., 2012a,b; Guliyeva et al., 2024). Continuing our research into the chemistry of furyl-substituted sulfonamides (Burkin et al., 2024; Mammadova et al., 2023a,b), a new approach toward the cyclo­addition of dimethyl but-2-ynedioate (DMAD) with substituted furans (Zubkov et al., 2009; Borisova et al., 2018a,b) has been developed. In particular, in the course of the thermic [4 + 2] cyclo­addition between DMAD and sulfamide 2, an inter­esting sequence of reaction steps was observed; [4 + 2] cyclo­addition, cleavage of the ep­oxy bridge, and a subsequent aromatization of the cyclo­hexene ring (Fig. 1).1.

Figure 1.

Figure 1

Synthesis of dimethyl 3-methyl-8-{[4-(tri­fluoro­meth­yl)phen­yl]sulfon­yl}-7,8-di­hydro-4H-4,6a-ep­oxy­benzo[b]naphtho­[1,8-de]azepine-5,6-di­carboxyl­ate.

2. Structural commentary

Fig. 2 shows the mol­ecular structure of the title compound, intra­molecular C—H⋯O hydrogen bonds, and naming of the rings in the mol­ecule. The mol­ecular conformation is stable due to the intra­molecular hydrogen bonds C7—H7B⋯O17, C7—H7A⋯O1 and C19—H19⋯O2, which form S(6), S(5) and S(5) ring motifs, respectively (Fig. 2; Table 1; Bernstein et al., 1995). Fig. 3 shows a detailed view of the central rings of the mol­ecule. The central ring A (C6A/C7/N8/C8A/C12A/C12B/C12C) exhibits a distorted chair form [puckering parameters: q2 = 0.708 (1), q3 = 207 (1) Å, φ(2) = −29.76 (9), φ(3) = −138.1 (4) °, QT = 0.738 (1) Å, and spherical polar angle θ(2) = 73.70 (9)°]. Ring A (r.m.s. deviation of fitted atoms = 0.2783 Å) subtends dihedral angles of 20.58 (5), 50.46 (5), 30.64 (5) and 28.18 (5)°, respectively, with rings D (C1–C3/C3A/C12C/C12B), E (C3A/C4–C6/C6A/C12C), F (C8A/C9–C12/C12A) and G (C18–C23). In the 7-oxabi­cyclo­[2.2.1]hepta-2,5-diene unit, the five-membered rings B (O13/C4/C3A/C12C/C6A) and C (O13/C4–C6/C6A) show envelope conformations on atom O13 [B: q(2) = 0.5436 (12) Å, φ(2) = 0.35 (14)° and C: q(2) = 0.5395 (12) Å, φ(2) = 179.95 (14)°]. The bond lengths and angles in the title compound are in good agreement with those reported for related compounds (see Database survey section).

Figure 2.

Figure 2

Mol­ecular structure of the title compound showing atom labelling and ellipsoids at the 30% probability level. The minor disorder component has been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O16i 1.00 2.49 3.3893 (16) 149
C7—H7A⋯O1 0.99 2.35 2.8481 (15) 111
C7—H7B⋯O17 0.99 2.46 3.0071 (14) 115
C12—H12⋯O2ii 0.95 2.55 3.1357 (15) 120
C15—H15A⋯O13ii 0.98 2.47 3.3741 (17) 153
C17—H17B⋯F1iii 0.98 2.54 3.3033 (17) 135
C19—H19⋯O2 0.95 2.52 2.9003 (17) 104
C22—H22⋯O14i 0.95 2.37 3.2698 (19) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

A detailed view of the central rings of the title mol­ecule.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules form Inline graphic(17) ring motifs by C—H⋯O inter­actions and are linked by C—H⋯F inter­actions to form sheets parallel to the (002) plane (Figs. 4 and 5; Table 1). Additionally, S—O⋯π (Fig. 5; Table 1) and π–π inter­actions [Fig. 6; Cg3⋯Cg6 = 3.6159 (7) Å, slippage = 0.804 Å; where Cg3 and Cg6 are the centroids of rings D (C1–C3/C3A/C12C/C12B) and G (C18–C23), respectively] link the mol­ecules along the a-axis direction. van der Waals inter­actions between the mol­ecular sheets reinforce the mol­ecular packing.

Figure 4.

Figure 4

A view along the a axis of the title compound, showing the crystal packing. C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.

Figure 5.

Figure 5

A view along the b axis of the title compound, showing the crystal packing. C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.

Figure 6.

Figure 6

A partial packing diagram showing S—O⋯π and π–π inter­actions as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Hirshfeld surfaces and the corresponding two-dimensional fingerprint plots were created using CrystalExplorer17.5 (Spackman et al., 2021) in order to visualize the inter­molecular inter­actions (Tables 1 and 2). Fig. 7 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: H⋯H (37.3%), O⋯H/H⋯O (24.1%), F⋯H/H⋯F (19.0%) and C⋯H/H⋯C (10.3%). Smaller contributions are made by O⋯C/C⋯O(4.9%), O⋯O(1.6%), C⋯C (1.5%), F⋯C/C⋯F (0.7%), F⋯O/O⋯F (0.4%), N⋯H/H⋯N (0.2%), S⋯C/C⋯S (0.1%) and S⋯H/H⋯S (0.1%) inter­actions.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact distance Symmetry operation
F3⋯H17C 2.72 x, −1 + y, z
F1⋯H17B 2.54 −1 + x, −1 + y, z
H12⋯H1 2.54 1 − x, 1 − y, 1 − z
O13⋯H15A 2.47 −1 + x, y, z
O14⋯H22 2.37 1 − x, Inline graphic + y, Inline graphic − z
O14⋯H15B 2.64 2 − x, Inline graphic + y, Inline graphic − z
H22⋯O14 2.37 1 − x, −Inline graphic + y, Inline graphic − z
H19⋯H19 2.27 x, 1 − y, 1 − z
H17A⋯H10 2.51 1 − x, 2 − y, 1 − z
H10⋯H9 2.58 1 − x, 2 − y, 1 − z

Figure 7.

Figure 7

(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (c) F⋯H/H⋯F and (c) C⋯H/H⋯C contacts.

4. Database survey

A search of the Cambridge Structural Database (Version 5.41, last update November 2019; Groom et al., 2016) for 11-oxatri­cyclo­[6.2.1.02,7]undeca­nes gave 739 hits, while a search for 3-methyl-11-oxatri­cyclo­[6.2.1.02,7]undeca­nes gave zero hits. In these searches, the most related compounds are CSD refcode COKHAP (Sadikhova et al., 2024) and POYBEL (Zubkov et al., 2009). In COKHAP, two hexane rings and one oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The oxane ring is puckered. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network. POYBEL comprises a fused penta­cyclic system containing two five-membered (cyclo­pentane and tetra­hydro­furan) and three six-membered (tetra­hydro­pyridinone, tetra­hydro­pyridine and benzene) rings. Both five-membered rings of the bicyclic fragment have the usual envelope conformations, and the two central six-membered rings adopt sofa and non-symmetrical half-chair conformations.

In addition, three related compounds containing the O=S=O group are YIKROD (Mammadova et al., 2023a), KETGID (Schinke et al., 2022) and LUJKUA (Yakuth et al., 2024). In YIKROD, intra­molecular inter­actions are observed between the furan and benzene rings of the 4-cyano­phenyl group. In the crystal, mol­ecules are connected via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the (100) plane. These layers are inter­connected by C⋯H inter­actions and weak van der Waals inter­actions. In KETGID, the 1,2-oxazole and methanone fragments form an almost coplanar unit. The crystal structure features three short inter­molecular C—H⋯O contacts involving the methane­sulfonyl-O atoms. In LUJKUA, the asymmetric unit contains two distinct mol­ecules, which exhibit differences in conformation resulting from a variation in key torsion angles. These distinctions influence the mol­ecular orientation and inter­molecular inter­actions, with strong N—H⋯N and N—H⋯O hydrogen bonds forming a centrosymmetric tetra­mer stabilized by π–π stacking.

5. Synthesis and crystallization

Dimethyl but-2-ynedioate (133.2 µL, 1.1 mmol) was added to a solution of N-(furan-2-ylmeth­yl)-N-[2-(5-methyl­furan-2-yl)phen­yl]-4-(tri­fluoro­meth­yl)benzene­sulfonamide 2 (100 mg, 0.22 mmol) in o-xylene (5 mL). The mixture was refluxed for 5 h. After cooling of the reaction to r.t, the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (eluent: from hexane to ethyl acetate). The title compound was obtained as colourless powder, yield 27%, 35 mg (0.059 mmol); m.p. 486–487 K. A single crystal of the title compound was grown from ethanol. IR (KBr), ν (cm−1): 1753 (CO2), 1325 (νas SO2), 1169 (νs SO2). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 7.71 (dd, J = 7.6, 1.7, 1H, H Ar), 7.50–7.44 (m, 5H, H Ar), 7.20 (d, J = 8.1, 2H, H Ar), 6.69 (d, J = 7.9, 1H, H Ar), 6.61 (d, J = 8.1, 1H, H Ar), 5.91 (s, 1H, H Ar), 5.15 (d, J = 16.7, 1H, NCH), 4.47 (d, J = 16.7, 1H, NCH), 3.76 (s, 3H, OCH3), 3.47 (s, 3H, OCH3), 2.29 (s, 3H, CH3). 13C{1H} NMR (176.1 MHz, CDCl3): δ there are no signal of CF3 163.1, 162.4, 151.2, 150.6, 145.3, 144.1, 142.7, 137.4, 137.0, 133.3 (q, J = 32.4, 1 C), 132.4, 130.9, 130.0, 129.7, 129.2 (2C), 128.3, 127.9 (2C), 126.1, 124.5 (q, J = 4.1, 2 C), 96.9, 81.3, 54.8, 52.5, 52.2, 17.4. 19F{1H} NMR (658.8 MHz, CDCl3): −63.27. MS (ESI) m/z: [M + H]+ 586. Elemental analysis calculated (%) for C29H22F3NO7S: C 59.49, H 3.79, N 2.39, S 5.48; found: C 59.81, H 3.48, N 2.19, S 5.33.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were positioned geometrically (C—H = 0.95 and 1.00 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The methyl group (C13) attached to the benzene ring was found to be disordered over two positions with a refined occupancy ratio of 0.53 (2): 0.47 (2). A SADI instruction was used to restrain the C3—C13 and C3—C13′ bonds. The anisotropic displacement parameters of both parts of the carbon atom of the disordered methyl group were restrained to be similar with EADP instruction.

Table 3. Experimental details.

Crystal data
Chemical formula C29H22F3NO7S
M r 585.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.6375 (5), 11.0324 (6), 30.2019 (8)
β (°) 93.983 (1)
V3) 2538.7 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.79
Crystal size (mm) 0.35 × 0.18 × 0.17
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
Tmin, Tmax 0.713, 0.737
No. of measured, independent and observed [I > 2σ(I)] reflections 31570, 5526, 5187
R int 0.049
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.05
No. of reflections 5526
No. of parameters 379
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2016/6 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b, ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004426/nx2026sup1.cif

e-81-00543-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004426/nx2026Isup2.hkl

e-81-00543-Isup2.hkl (439.6KB, hkl)

CCDC reference: 2451675

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

GMB and SA thank to Common Use Center ‘Physical and Chemical Research of New Materials, Substances and Catalytic Systems’. This publication has been supported by the RUDN University Scientific Projects Grant System, project No. 021408–2-000, as well as by the Baku Engineering University (Azerbaijan) and Azerbaijan Medical University. The author’s contributions are as follows. Conceptualization, MA and GMM; synthesis, GMB and SA; AGK NMR analysis; X-ray analysis, VNK, NAG; writing (review and editing of the manuscript) MA and GMM; funding acquisition KIH; supervision, MA and GMM.

supplementary crystallographic information

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Crystal data

C29H22F3NO7S F(000) = 1208
Mr = 585.53 Dx = 1.532 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 7.6375 (5) Å Cell parameters from 20964 reflections
b = 11.0324 (6) Å θ = 2.9–79.9°
c = 30.2019 (8) Å µ = 1.79 mm1
β = 93.983 (1)° T = 100 K
V = 2538.7 (2) Å3 Prism, colourless
Z = 4 0.35 × 0.18 × 0.17 mm

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Data collection

Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector diffractometer 5187 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.049
φ and ω scans θmax = 80.1°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −9→8
Tmin = 0.713, Tmax = 0.737 k = −14→13
31570 measured reflections l = −38→38
5526 independent reflections

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.8141P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
5526 reflections Δρmax = 0.45 e Å3
379 parameters Δρmin = −0.43 e Å3
1 restraint Extinction correction: SHELXL-2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.00089 (14)

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 −0.08268 (3) 0.68046 (3) 0.60331 (2) 0.01536 (10)
F1 0.03672 (12) 0.08285 (8) 0.60261 (3) 0.0324 (2)
F2 0.22478 (16) 0.13678 (9) 0.55695 (5) 0.0501 (3)
F3 0.29014 (14) 0.14333 (10) 0.62756 (5) 0.0539 (3)
O1 −0.16062 (12) 0.70213 (9) 0.64434 (3) 0.0216 (2)
O2 −0.17402 (12) 0.70996 (9) 0.56162 (3) 0.0225 (2)
C1 0.48862 (15) 0.49339 (11) 0.57852 (4) 0.0171 (2)
H1 0.496038 0.479440 0.547665 0.021*
C2 0.55556 (16) 0.40746 (11) 0.60859 (4) 0.0187 (2)
H2 0.607100 0.336071 0.597644 0.022*
C3 0.54990 (15) 0.42217 (11) 0.65483 (4) 0.0172 (2)
C3A 0.47063 (15) 0.52723 (11) 0.66816 (4) 0.0156 (2)
C4 0.44151 (15) 0.58212 (12) 0.71373 (4) 0.0171 (2)
H4 0.444763 0.524274 0.739264 0.021*
C5 0.56803 (16) 0.69088 (11) 0.71852 (4) 0.0165 (2)
C6 0.50225 (15) 0.77414 (11) 0.68956 (4) 0.0149 (2)
C6A 0.33411 (15) 0.71572 (11) 0.66698 (4) 0.0141 (2)
C7 0.18668 (15) 0.79745 (11) 0.64834 (4) 0.0158 (2)
H7A 0.096592 0.803245 0.670287 0.019*
H7B 0.234316 0.879823 0.644221 0.019*
N8 0.10246 (13) 0.75554 (9) 0.60592 (3) 0.0148 (2)
C8A 0.19749 (15) 0.76703 (11) 0.56657 (4) 0.0144 (2)
C9 0.14221 (16) 0.85518 (12) 0.53567 (4) 0.0186 (2)
H9 0.041411 0.902688 0.540357 0.022*
C10 0.23335 (17) 0.87407 (12) 0.49810 (4) 0.0217 (3)
H10 0.195141 0.934034 0.477015 0.026*
C11 0.38118 (17) 0.80441 (12) 0.49158 (4) 0.0202 (3)
H11 0.445235 0.817581 0.466155 0.024*
C12 0.43538 (16) 0.71573 (12) 0.52212 (4) 0.0171 (2)
H12 0.535760 0.668175 0.517074 0.020*
C12A 0.34499 (15) 0.69485 (11) 0.56029 (4) 0.0143 (2)
C12B 0.40963 (14) 0.60123 (11) 0.59260 (4) 0.0144 (2)
C12C 0.40171 (14) 0.61400 (11) 0.63793 (4) 0.0137 (2)
O13 0.27786 (11) 0.64524 (8) 0.70381 (3) 0.01706 (19)
C13 0.6235 (19) 0.3275 (12) 0.6870 (4) 0.0238 (3) 0.53 (2)
H13A 0.732679 0.294903 0.676576 0.036* 0.53 (2)
H13B 0.538176 0.261703 0.689067 0.036* 0.53 (2)
H13C 0.647483 0.364271 0.716356 0.036* 0.53 (2)
C13' 0.625 (2) 0.3275 (13) 0.6867 (5) 0.0238 (3) 0.47 (2)
H13D 0.747394 0.348027 0.695799 0.036* 0.47 (2)
H13E 0.621140 0.248114 0.672104 0.036* 0.47 (2)
H13F 0.556513 0.324858 0.712874 0.036* 0.47 (2)
C14 0.74252 (17) 0.68539 (12) 0.74318 (4) 0.0187 (3)
O14 0.82551 (14) 0.77048 (10) 0.75805 (4) 0.0298 (2)
O15 0.79316 (12) 0.56938 (9) 0.74709 (3) 0.0221 (2)
C15 0.96586 (17) 0.54877 (14) 0.76935 (5) 0.0252 (3)
H15A 1.051895 0.601521 0.756353 0.038*
H15B 0.999568 0.463854 0.765660 0.038*
H15C 0.962354 0.567077 0.801032 0.038*
C16 0.58807 (15) 0.88141 (11) 0.67119 (4) 0.0160 (2)
O16 0.68066 (13) 0.95432 (9) 0.69113 (3) 0.0247 (2)
O17 0.54422 (11) 0.88538 (8) 0.62730 (3) 0.01773 (19)
C17 0.63324 (19) 0.97498 (13) 0.60257 (5) 0.0244 (3)
H17A 0.585829 0.974193 0.571579 0.037*
H17B 0.759006 0.956514 0.603902 0.037*
H17C 0.615553 1.055289 0.615390 0.037*
C18 −0.02522 (15) 0.52580 (11) 0.60113 (4) 0.0161 (2)
C19 −0.01841 (17) 0.47033 (12) 0.56005 (4) 0.0213 (3)
H19 −0.055255 0.512804 0.533666 0.026*
C20 0.04285 (18) 0.35202 (13) 0.55788 (5) 0.0241 (3)
H20 0.049166 0.312688 0.530058 0.029*
C21 0.09484 (17) 0.29210 (12) 0.59721 (5) 0.0220 (3)
C22 0.08252 (17) 0.34703 (12) 0.63835 (5) 0.0224 (3)
H22 0.115329 0.303757 0.664827 0.027*
C23 0.02216 (17) 0.46516 (12) 0.64049 (4) 0.0195 (3)
H23 0.013327 0.503979 0.668321 0.023*
C24 0.16202 (19) 0.16488 (13) 0.59579 (6) 0.0296 (3)

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01088 (15) 0.01765 (16) 0.01767 (16) 0.00027 (9) 0.00183 (11) 0.00049 (10)
F1 0.0335 (5) 0.0180 (4) 0.0464 (5) −0.0065 (3) 0.0085 (4) −0.0001 (4)
F2 0.0591 (7) 0.0245 (5) 0.0717 (8) 0.0035 (4) 0.0407 (6) −0.0050 (5)
F3 0.0374 (5) 0.0263 (5) 0.0941 (10) 0.0095 (4) −0.0236 (6) −0.0078 (5)
O1 0.0165 (4) 0.0240 (5) 0.0252 (5) 0.0012 (3) 0.0086 (4) −0.0018 (4)
O2 0.0159 (4) 0.0257 (5) 0.0250 (5) −0.0014 (3) −0.0049 (3) 0.0034 (4)
C1 0.0160 (5) 0.0185 (6) 0.0170 (5) −0.0007 (4) 0.0020 (4) −0.0035 (4)
C2 0.0174 (5) 0.0157 (5) 0.0231 (6) 0.0007 (4) 0.0027 (4) −0.0026 (4)
C3 0.0137 (5) 0.0166 (6) 0.0213 (6) −0.0015 (4) 0.0013 (4) 0.0031 (4)
C3A 0.0129 (5) 0.0186 (6) 0.0154 (5) −0.0025 (4) 0.0017 (4) 0.0016 (4)
C4 0.0153 (5) 0.0215 (6) 0.0148 (5) 0.0005 (4) 0.0025 (4) 0.0028 (4)
C5 0.0169 (6) 0.0218 (6) 0.0110 (5) 0.0010 (4) 0.0028 (4) −0.0018 (4)
C6 0.0143 (5) 0.0193 (6) 0.0114 (5) 0.0005 (4) 0.0023 (4) −0.0036 (4)
C6A 0.0137 (5) 0.0174 (5) 0.0116 (5) −0.0014 (4) 0.0035 (4) 0.0002 (4)
C7 0.0142 (5) 0.0178 (5) 0.0155 (5) 0.0011 (4) 0.0013 (4) −0.0029 (4)
N8 0.0123 (4) 0.0175 (5) 0.0144 (5) −0.0002 (4) 0.0012 (4) −0.0006 (4)
C8A 0.0133 (5) 0.0157 (5) 0.0141 (5) −0.0026 (4) 0.0011 (4) −0.0011 (4)
C9 0.0182 (5) 0.0183 (6) 0.0192 (6) 0.0011 (4) 0.0003 (4) 0.0015 (5)
C10 0.0244 (6) 0.0218 (6) 0.0188 (6) −0.0007 (5) 0.0002 (5) 0.0054 (5)
C11 0.0210 (6) 0.0258 (6) 0.0141 (5) −0.0032 (5) 0.0033 (4) 0.0017 (5)
C12 0.0150 (5) 0.0217 (6) 0.0146 (5) −0.0011 (4) 0.0011 (4) −0.0027 (4)
C12A 0.0139 (5) 0.0161 (5) 0.0128 (5) −0.0021 (4) −0.0010 (4) −0.0022 (4)
C12B 0.0117 (5) 0.0165 (5) 0.0151 (5) −0.0014 (4) 0.0012 (4) −0.0010 (4)
C12C 0.0108 (5) 0.0148 (5) 0.0155 (5) −0.0007 (4) 0.0018 (4) −0.0009 (4)
O13 0.0149 (4) 0.0225 (4) 0.0142 (4) 0.0008 (3) 0.0043 (3) 0.0036 (3)
C13 0.0248 (7) 0.0199 (6) 0.0267 (7) 0.0026 (5) 0.0027 (6) 0.0074 (5)
C13' 0.0248 (7) 0.0199 (6) 0.0267 (7) 0.0026 (5) 0.0027 (6) 0.0074 (5)
C14 0.0192 (6) 0.0258 (6) 0.0112 (5) 0.0013 (5) 0.0007 (4) 0.0012 (4)
O14 0.0306 (5) 0.0287 (5) 0.0282 (5) −0.0025 (4) −0.0117 (4) −0.0016 (4)
O15 0.0185 (4) 0.0259 (5) 0.0216 (4) 0.0025 (4) −0.0020 (3) 0.0031 (4)
C15 0.0177 (6) 0.0360 (7) 0.0217 (6) 0.0042 (5) −0.0010 (5) 0.0066 (5)
C16 0.0151 (5) 0.0168 (5) 0.0164 (5) 0.0021 (4) 0.0024 (4) −0.0020 (4)
O16 0.0266 (5) 0.0233 (5) 0.0236 (5) −0.0069 (4) −0.0016 (4) −0.0053 (4)
O17 0.0190 (4) 0.0192 (4) 0.0150 (4) −0.0035 (3) 0.0011 (3) 0.0015 (3)
C17 0.0274 (6) 0.0215 (6) 0.0246 (6) −0.0037 (5) 0.0051 (5) 0.0066 (5)
C18 0.0127 (5) 0.0180 (6) 0.0179 (6) −0.0022 (4) 0.0028 (4) −0.0001 (4)
C19 0.0243 (6) 0.0231 (6) 0.0167 (6) −0.0038 (5) 0.0035 (5) −0.0010 (5)
C20 0.0276 (7) 0.0220 (6) 0.0235 (6) −0.0045 (5) 0.0069 (5) −0.0050 (5)
C21 0.0169 (6) 0.0171 (6) 0.0325 (7) −0.0035 (5) 0.0045 (5) −0.0018 (5)
C22 0.0218 (6) 0.0198 (6) 0.0250 (6) −0.0031 (5) −0.0016 (5) 0.0030 (5)
C23 0.0210 (6) 0.0199 (6) 0.0175 (6) −0.0025 (5) 0.0010 (4) −0.0003 (4)
C24 0.0227 (7) 0.0199 (6) 0.0469 (9) −0.0026 (5) 0.0067 (6) −0.0021 (6)

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Geometric parameters (Å, º)

S1—O1 1.4314 (9) C10—H10 0.9500
S1—O2 1.4338 (10) C11—C12 1.3877 (18)
S1—N8 1.6359 (10) C11—H11 0.9500
S1—C18 1.7642 (13) C12—C12A 1.4034 (16)
F1—C24 1.3434 (17) C12—H12 0.9500
F2—C24 1.334 (2) C12A—C12B 1.4819 (17)
F3—C24 1.343 (2) C12B—C12C 1.3816 (16)
C1—C2 1.3857 (18) C13—H13A 0.9800
C1—C12B 1.4129 (17) C13—H13B 0.9800
C1—H1 0.9500 C13—H13C 0.9800
C2—C3 1.4096 (18) C13'—H13D 0.9800
C2—H2 0.9500 C13'—H13E 0.9800
C3—C3A 1.3805 (17) C13'—H13F 0.9800
C3—C13' 1.507 (10) C14—O14 1.2022 (18)
C3—C13 1.509 (9) C14—O15 1.3400 (17)
C3A—C12C 1.4001 (17) O15—C15 1.4562 (15)
C3A—C4 1.5340 (17) C15—H15A 0.9800
C4—O13 1.4439 (15) C15—H15B 0.9800
C4—C5 1.5411 (17) C15—H15C 0.9800
C4—H4 1.0000 C16—O16 1.2045 (16)
C5—C6 1.3416 (18) C16—O17 1.3452 (15)
C5—C14 1.4820 (17) O17—C17 1.4378 (15)
C6—C16 1.4795 (17) C17—H17A 0.9800
C6—C6A 1.5517 (16) C17—H17B 0.9800
C6A—O13 1.4466 (13) C17—H17C 0.9800
C6A—C7 1.5198 (16) C18—C19 1.3876 (17)
C6A—C12C 1.5358 (16) C18—C23 1.3899 (18)
C7—N8 1.4680 (15) C19—C20 1.390 (2)
C7—H7A 0.9900 C19—H19 0.9500
C7—H7B 0.9900 C20—C21 1.393 (2)
N8—C8A 1.4405 (15) C20—H20 0.9500
C8A—C9 1.3928 (17) C21—C22 1.391 (2)
C8A—C12A 1.4031 (17) C21—C24 1.4961 (19)
C9—C10 1.3877 (18) C22—C23 1.3854 (19)
C9—H9 0.9500 C22—H22 0.9500
C10—C11 1.3910 (19) C23—H23 0.9500
O1—S1—O2 121.06 (6) C12—C12A—C12B 119.67 (11)
O1—S1—N8 106.49 (6) C12C—C12B—C1 115.67 (11)
O2—S1—N8 107.06 (5) C12C—C12B—C12A 123.09 (11)
O1—S1—C18 108.27 (6) C1—C12B—C12A 121.22 (11)
O2—S1—C18 107.08 (6) C12B—C12C—C3A 122.41 (11)
N8—S1—C18 105.97 (5) C12B—C12C—C6A 132.85 (11)
C2—C1—C12B 121.64 (11) C3A—C12C—C6A 104.66 (10)
C2—C1—H1 119.2 C4—O13—C6A 96.88 (8)
C12B—C1—H1 119.2 C3—C13—H13A 109.5
C1—C2—C3 122.36 (11) C3—C13—H13B 109.5
C1—C2—H2 118.8 H13A—C13—H13B 109.5
C3—C2—H2 118.8 C3—C13—H13C 109.5
C3A—C3—C2 115.46 (11) H13A—C13—H13C 109.5
C3A—C3—C13' 123.5 (7) H13B—C13—H13C 109.5
C2—C3—C13' 121.1 (7) C3—C13'—H13D 109.5
C3A—C3—C13 123.0 (6) C3—C13'—H13E 109.5
C2—C3—C13 121.5 (6) H13D—C13'—H13E 109.5
C3—C3A—C12C 122.45 (11) C3—C13'—H13F 109.5
C3—C3A—C4 133.39 (11) H13D—C13'—H13F 109.5
C12C—C3A—C4 104.11 (10) H13E—C13'—H13F 109.5
O13—C4—C3A 100.46 (9) O14—C14—O15 124.85 (12)
O13—C4—C5 99.91 (10) O14—C14—C5 126.04 (12)
C3A—C4—C5 105.22 (9) O15—C14—C5 109.10 (11)
O13—C4—H4 116.3 C14—O15—C15 115.88 (11)
C3A—C4—H4 116.3 O15—C15—H15A 109.5
C5—C4—H4 116.3 O15—C15—H15B 109.5
C6—C5—C14 129.68 (12) H15A—C15—H15B 109.5
C6—C5—C4 105.54 (11) O15—C15—H15C 109.5
C14—C5—C4 123.47 (11) H15A—C15—H15C 109.5
C5—C6—C16 129.54 (11) H15B—C15—H15C 109.5
C5—C6—C6A 105.26 (10) O16—C16—O17 124.64 (12)
C16—C6—C6A 122.82 (10) O16—C16—C6 127.35 (12)
O13—C6A—C7 110.59 (9) O17—C16—C6 108.01 (10)
O13—C6A—C12C 100.14 (9) C16—O17—C17 116.09 (10)
C7—C6A—C12C 119.46 (10) O17—C17—H17A 109.5
O13—C6A—C6 99.57 (9) O17—C17—H17B 109.5
C7—C6A—C6 119.05 (10) H17A—C17—H17B 109.5
C12C—C6A—C6 104.71 (9) O17—C17—H17C 109.5
N8—C7—C6A 113.89 (10) H17A—C17—H17C 109.5
N8—C7—H7A 108.8 H17B—C17—H17C 109.5
C6A—C7—H7A 108.8 C19—C18—C23 121.92 (12)
N8—C7—H7B 108.8 C19—C18—S1 119.01 (10)
C6A—C7—H7B 108.8 C23—C18—S1 118.95 (10)
H7A—C7—H7B 107.7 C18—C19—C20 119.34 (12)
C8A—N8—C7 118.49 (9) C18—C19—H19 120.3
C8A—N8—S1 119.23 (8) C20—C19—H19 120.3
C7—N8—S1 121.75 (8) C19—C20—C21 118.86 (12)
C9—C8A—C12A 120.98 (11) C19—C20—H20 120.6
C9—C8A—N8 117.87 (11) C21—C20—H20 120.6
C12A—C8A—N8 121.12 (10) C22—C21—C20 121.45 (13)
C10—C9—C8A 120.45 (12) C22—C21—C24 118.61 (13)
C10—C9—H9 119.8 C20—C21—C24 119.93 (13)
C8A—C9—H9 119.8 C23—C22—C21 119.65 (12)
C9—C10—C11 119.40 (12) C23—C22—H22 120.2
C9—C10—H10 120.3 C21—C22—H22 120.2
C11—C10—H10 120.3 C22—C23—C18 118.72 (12)
C12—C11—C10 120.20 (12) C22—C23—H23 120.6
C12—C11—H11 119.9 C18—C23—H23 120.6
C10—C11—H11 119.9 F2—C24—F3 107.37 (13)
C11—C12—C12A 121.37 (11) F2—C24—F1 106.36 (13)
C11—C12—H12 119.3 F3—C24—F1 105.22 (13)
C12A—C12—H12 119.3 F2—C24—C21 112.84 (13)
C8A—C12A—C12 117.59 (11) F3—C24—C21 112.32 (13)
C8A—C12A—C12B 122.72 (10) F1—C24—C21 112.23 (11)
C12B—C1—C2—C3 −0.27 (19) C12—C12A—C12B—C12C 143.46 (12)
C1—C2—C3—C3A 0.97 (18) C8A—C12A—C12B—C1 146.80 (12)
C1—C2—C3—C13' −179.4 (8) C12—C12A—C12B—C1 −34.76 (17)
C1—C2—C3—C13 180.0 (7) C1—C12B—C12C—C3A 1.32 (17)
C2—C3—C3A—C12C −0.53 (17) C12A—C12B—C12C—C3A −176.99 (11)
C13'—C3—C3A—C12C 179.9 (8) C1—C12B—C12C—C6A 177.79 (11)
C13—C3—C3A—C12C −179.5 (7) C12A—C12B—C12C—C6A −0.5 (2)
C2—C3—C3A—C4 −177.38 (12) C3—C3A—C12C—C12B −0.65 (18)
C13'—C3—C3A—C4 3.0 (8) C4—C3A—C12C—C12B 177.00 (11)
C13—C3—C3A—C4 3.6 (7) C3—C3A—C12C—C6A −177.97 (11)
C3—C3A—C4—O13 −148.68 (13) C4—C3A—C12C—C6A −0.32 (11)
C12C—C3A—C4—O13 34.06 (11) O13—C6A—C12C—C12B 149.70 (12)
C3—C3A—C4—C5 107.93 (15) C7—C6A—C12C—C12B 28.95 (18)
C12C—C3A—C4—C5 −69.34 (11) C6—C6A—C12C—C12B −107.51 (14)
O13—C4—C5—C6 −33.53 (11) O13—C6A—C12C—C3A −33.39 (11)
C3A—C4—C5—C6 70.27 (12) C7—C6A—C12C—C3A −154.14 (10)
O13—C4—C5—C14 158.45 (10) C6—C6A—C12C—C3A 69.41 (11)
C3A—C4—C5—C14 −97.75 (13) C3A—C4—O13—C6A −54.37 (10)
C14—C5—C6—C16 4.6 (2) C5—C4—O13—C6A 53.28 (10)
C4—C5—C6—C16 −162.42 (11) C7—C6A—O13—C4 −179.14 (10)
C14—C5—C6—C6A 167.07 (12) C12C—C6A—O13—C4 53.93 (10)
C4—C5—C6—C6A 0.07 (12) C6—C6A—O13—C4 −53.03 (10)
C5—C6—C6A—O13 33.30 (11) C6—C5—C14—O14 36.1 (2)
C16—C6—C6A—O13 −162.73 (10) C4—C5—C14—O14 −158.94 (13)
C5—C6—C6A—C7 153.40 (10) C6—C5—C14—O15 −144.93 (13)
C16—C6—C6A—C7 −42.62 (15) C4—C5—C14—O15 20.01 (16)
C5—C6—C6A—C12C −69.93 (11) O14—C14—O15—C15 −3.06 (18)
C16—C6—C6A—C12C 94.05 (12) C5—C14—O15—C15 177.98 (10)
O13—C6A—C7—N8 −105.16 (11) C5—C6—C16—O16 −44.8 (2)
C12C—C6A—C7—N8 10.18 (15) C6A—C6—C16—O16 155.42 (12)
C6—C6A—C7—N8 140.52 (10) C5—C6—C16—O17 135.61 (13)
C6A—C7—N8—C8A −72.75 (13) C6A—C6—C16—O17 −24.19 (14)
C6A—C7—N8—S1 98.88 (11) O16—C16—O17—C17 8.00 (17)
O1—S1—N8—C8A −170.14 (9) C6—C16—O17—C17 −172.38 (10)
O2—S1—N8—C8A −39.32 (10) O1—S1—C18—C19 152.89 (10)
C18—S1—N8—C8A 74.73 (10) O2—S1—C18—C19 20.83 (11)
O1—S1—N8—C7 18.29 (11) N8—S1—C18—C19 −93.20 (11)
O2—S1—N8—C7 149.11 (9) O1—S1—C18—C23 −30.97 (11)
C18—S1—N8—C7 −96.85 (10) O2—S1—C18—C23 −163.03 (10)
C7—N8—C8A—C9 −107.68 (13) N8—S1—C18—C23 82.94 (11)
S1—N8—C8A—C9 80.47 (13) C23—C18—C19—C20 −2.14 (19)
C7—N8—C8A—C12A 70.01 (15) S1—C18—C19—C20 173.88 (10)
S1—N8—C8A—C12A −101.83 (12) C18—C19—C20—C21 0.4 (2)
C12A—C8A—C9—C10 −0.56 (19) C19—C20—C21—C22 1.6 (2)
N8—C8A—C9—C10 177.14 (11) C19—C20—C21—C24 −179.74 (12)
C8A—C9—C10—C11 −0.2 (2) C20—C21—C22—C23 −1.9 (2)
C9—C10—C11—C12 0.9 (2) C24—C21—C22—C23 179.43 (12)
C10—C11—C12—C12A −0.7 (2) C21—C22—C23—C18 0.18 (19)
C9—C8A—C12A—C12 0.70 (17) C19—C18—C23—C22 1.85 (19)
N8—C8A—C12A—C12 −176.93 (10) S1—C18—C23—C22 −174.17 (9)
C9—C8A—C12A—C12B 179.17 (11) C22—C21—C24—F2 −158.19 (13)
N8—C8A—C12A—C12B 1.54 (17) C20—C21—C24—F2 23.13 (19)
C11—C12—C12A—C8A −0.05 (18) C22—C21—C24—F3 −36.65 (18)
C11—C12—C12A—C12B −178.57 (11) C20—C21—C24—F3 144.67 (14)
C2—C1—C12B—C12C −0.87 (17) C22—C21—C24—F1 81.66 (17)
C2—C1—C12B—C12A 177.47 (11) C20—C21—C24—F1 −97.02 (16)
C8A—C12A—C12B—C12C −34.98 (17)

Dimethyl 3-methyl-8-{[4-(trifluoromethyl)phenyl]sulfonyl}-7,8-dihydro-4H-4,6a-epoxybenzo[b]naphtho[1,8-de]azepine-5,6-dicarboxylate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O16i 1.00 2.49 3.3893 (16) 149
C7—H7A···O1 0.99 2.35 2.8481 (15) 111
C7—H7B···O17 0.99 2.46 3.0071 (14) 115
C12—H12···O2ii 0.95 2.55 3.1357 (15) 120
C15—H15A···O13ii 0.98 2.47 3.3741 (17) 153
C17—H17B···F1iii 0.98 2.54 3.3033 (17) 135
C19—H19···O2 0.95 2.52 2.9003 (17) 104
C22—H22···O14i 0.95 2.37 3.2698 (19) 158

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1, y, z; (iii) x+1, y+1, z.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Borisova, K., Nikitina, E., Novikov, R., Khrustalev, V., Dorovatovskii, P., Zubavichus, Y., Kuznetsov, M., Zaytsev, V., Varlamov, A. & Zubkov, F. (2018a). Chem. Commun.54, 2850–2853. [DOI] [PubMed]
  3. Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018b). J. Org. Chem.83, 4840–4850. [DOI] [PubMed]
  4. Burkin, G. M., Kvyatkovskaya, E. A., Khrustalev, V. N., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 418–422. [DOI] [PMC free article] [PubMed]
  5. Chakrabarti, S., Liu, M., Waldeck, D. H., Oliver, A. M. & Paddon-Row, M. N. (2007). J. Am. Chem. Soc.129, 3247–3256. [DOI] [PubMed]
  6. Chou, T.-C. & Li, Y.-J. (2015). Tetrahedron71, 5620–5633.
  7. Criado, A., Vilas-Varela, M., Cobas, A., Peréz, D., Pena, D. & Guitián, E. (2013). J. Org. Chem.78, 12637–12649. [DOI] [PubMed]
  8. Eckert-Maksić, M., Margetić, D., Kirin, S., Milić, D. & Matković-Čalogović, D. (2005). Eur. J. Org. Chem. pp. 4612–4620.
  9. Eda, S., Eguchi, F., Haneda, H. & Hamura, T. (2015). Chem. Commun.51, 5963–5966. [DOI] [PubMed]
  10. Enev, V. S., Felzmann, W., Gromov, A., Marchart, S. & Mulzer, J. (2012). Chem. Eur. J.18, 9651–9668. [DOI] [PubMed]
  11. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  12. Furrer, F., Linden, A. & Stuparu, M. C. (2013). Chem. Eur. J.19, 13199–13206. [DOI] [PubMed]
  13. Gromov, A., Enev, V. & Mulzer, J. (2009). Org. Lett.11, 2884–2886. [DOI] [PubMed]
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Guliyeva, N. A., Burkin, G. M., Annadurdyyeva, S., Khrustalev, V. N., Atioğlu, Z., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 62–66. [DOI] [PMC free article] [PubMed]
  16. Mammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023b). Acta Cryst. E79, 499–503. [DOI] [PMC free article] [PubMed]
  17. Mammadova, G. Z., Yakovleva, E. D., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Çelikesir, S. T. & Bhattarai, A. (2023a). Acta Cryst. E79, 747–751. [DOI] [PMC free article] [PubMed]
  18. Margetić, D., Eckert-Maksić, M., Trošelj, P. & Marinić, Z. (2010). J. Fluorine Chem.131, 408–416.
  19. Murphy, R. B., Norman, R. E., White, J. M., Perkins, M. V. & Johnston, M. R. (2016). Org. Biomol. Chem.14, 8707–8720. [DOI] [PubMed]
  20. Oh, C. H., Yi, H. J. & Lee, K. H. (2010). Bull. Korean Chem. Soc.31, 683–688.
  21. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  22. Roscalesa, S. & Plumet, J. (2017). Nat. Prod. Commun.12, 713–732. [PubMed]
  23. Sadikhova, N. D., Atioğlu, Z., Guliyeva, N. A., Podrezova, A. G., Nikitina, E. V., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 83–87. [DOI] [PMC free article] [PubMed]
  24. Schindler, C. S. & Carreira, E. M. (2009). Chem. Soc. Rev.38, 3222–3241. [DOI] [PubMed]
  25. Schinke, J., Gelbrich, T. & Griesser, U. J. (2022). Acta Cryst. E78, 979–983. [DOI] [PMC free article] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  29. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  30. Vinaya, Yakuth, S. A., Mohan Kumar, T. M., Bhaskar, B. L., Divakara, T. R., Yathirajan, H. S., Basavaraju, Y. B. & Parkin, S. (2024). Acta Cryst. E80, 1354–1358. [DOI] [PMC free article] [PubMed]
  31. Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron55, 13521–13642.
  32. Warrener, R. N., Margetic, D., Amarasekara, A. S., Butler, D. N., Mahadevan, I. B. & Russell, R. A. (1999). Org. Lett.1, 199–202.
  33. Warrener, R. N., Margetić, D., Foley, P. J., Butler, D. N., Winling, A., Beales, K. A. & Russell, R. A. (2001). Tetrahedron57, 571–582.
  34. Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). Tetrahedron Lett.60, 151204.
  35. Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012b). RSC Adv.2, 4103–4109.
  36. Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron65, 3789–3803.
  37. Zubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Khrustalev, V. N., Novikov, R. A. & Varlamov, A. V. (2012a). Chem. Heterocycl. Compd.48, 514–524.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004426/nx2026sup1.cif

e-81-00543-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004426/nx2026Isup2.hkl

e-81-00543-Isup2.hkl (439.6KB, hkl)

CCDC reference: 2451675

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES