Skip to main content
Genetics logoLink to Genetics
. 1980 Jul;95(3):649–660. doi: 10.1093/genetics/95.3.649

The Isolation and Characterization of Mutants Defective in Nitrate Assimilation in NEUROSPORA CRASSA

A Brian Tomsett 1, Reginald H Garrett 1
PMCID: PMC1214252  PMID: 6449399

Abstract

The isolation and characterization of mutants altered for nitrate assimilation in Neurospora crassa is described. The mutants isolated can be subdivided into five classes on the basis of growth tests that correspond to the growth patterns of existing mutants at six distinct loci. Mutants with growth characteristics like those of nit-2, nit-3 and nit-6 are assigned to those loci on the basis of noncomplementation and lack of recombination. Mutants that, from their growth patterns, appear to lack the molybdenum-containing co-factor for both nitrate reductase and xanthine dehydrogenase subdivide into three loci (nit-7, nit-8 and nit-9), all of which are genetically distinct from nit-1. nit-9 is a complex locus consisting of three complementation groups and thus appears similar to the cnxABC locus of Asperillus nidulans. Extensive complementational and recombinational analyses reveal that nit-4 and nit-5 are alleles of the same locus, and two new alleles of that locus have been isolated. The results indicate that, as in A. nidulans, nitrate assimilation in N. crassa requires at least four loci (nit-1, 7, 8 and 9) to produce the molybdenum co-factor for nitrate reductase (and xanthine dehydrogenase), one locus (nit-3) to code for the nitrate reductase apoprotein, one locus (nit-6) to code for the nitrite reductase approtein and only one locus (nit-4/5) for the regulation of induction of the pathway by nitrate and nitrite.

Full Text

The Full Text of this article is available as a PDF (812.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arst H. N., Jr, Rand K. N., Bailey C. R. Do the tightly linked structural genes for nitrate and nitrite reductases in Aspergillus nidulans form an operon? Evidence from an insertional translocation which separates them. Mol Gen Genet. 1979 Jul 2;174(1):89–100. doi: 10.1007/BF00433309. [DOI] [PubMed] [Google Scholar]
  2. Chang H. C., Mulkins G. J., Dyer J. C., Sorger G. J. Enzymatic and non-enzymatic reduction of nitrite by extracts of Neurospora crassa. J Bacteriol. 1975 Aug;123(2):755–758. doi: 10.1128/jb.123.2.755-758.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coddington A. Biochemical studies on the nit mutants of Neurospora crassa. Mol Gen Genet. 1976 May 7;145(2):195–206. doi: 10.1007/BF00269594. [DOI] [PubMed] [Google Scholar]
  4. Cove D. J. Control of gene action in Aspergillus nidulans. Proc R Soc Lond B Biol Sci. 1970 Dec 1;176(1044):267–275. doi: 10.1098/rspb.1970.0045. [DOI] [PubMed] [Google Scholar]
  5. Dunn-Coleman N. S., Tomsett A. B., Garrett R. H. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa: effect of the gln-1a locus. J Bacteriol. 1979 Aug;139(2):697–700. doi: 10.1128/jb.139.2.697-700.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Facklam T. J., Marzluf G. A. Nitrogen regulation of amino acid catabolism in Neurospora crassa. Biochem Genet. 1978 Apr;16(3-4):343–354. doi: 10.1007/BF00484090. [DOI] [PubMed] [Google Scholar]
  7. Garrett R. H., Amy N. K. Nitrate assimilation in fungi. Adv Microb Physiol. 1978;18:1–65. doi: 10.1016/s0065-2911(08)60414-2. [DOI] [PubMed] [Google Scholar]
  8. Garrett R. H., Nason A. Further purification and properties of Neurospora nitrate reductase. J Biol Chem. 1969 Jun 10;244(11):2870–2882. [PubMed] [Google Scholar]
  9. Ketchum P. A., Cambier H. Y., Frazier W. A., 3rd, Madansky C. H., Nason A. In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals. Proc Natl Acad Sci U S A. 1970 Jul;66(3):1016–1023. doi: 10.1073/pnas.66.3.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NICHOLAS D. J., NASON A. Mechanism of action of nitrate reductase from Neurospora. J Biol Chem. 1954 Nov;211(1):183–197. [PubMed] [Google Scholar]
  11. Nason A., Antoine A. D., Ketchum P. A., Frazier W. A., 3rd, Lee D. K. Formation of assimilatory nitrate reductase by in vitro inter-cistronic complementation in Neurospora crassa. Proc Natl Acad Sci U S A. 1970 Jan;65(1):137–144. doi: 10.1073/pnas.65.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sorger G. J., Giles N. H. Genetic control of nitrate reductase in Neurospora crassa. Genetics. 1965 Oct;52(4):777–788. doi: 10.1093/genetics/52.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tomsett A. B., Cove D. J. Deletion mapping of the niiA niaD gene region of Aspergillus nidulans. Genet Res. 1979 Aug;34(1):19–32. doi: 10.1017/s001667230001925x. [DOI] [PubMed] [Google Scholar]
  14. Vega J. M., Garrett R. H. Siroheme: a prosthetic group of the Neurospora crassa assimilatory nitrite reductase. J Biol Chem. 1975 Oct 25;250(20):7980–7989. [PubMed] [Google Scholar]
  15. Vega J. M., Greenbaum P., Garrett R. H. Studies on the in vitro inactivation of the Neurospora crassa assimilatory nitrite reductase in the presence of reduced pyridine nucleotides plus flavin. Biochim Biophys Acta. 1975 Feb 19;377(2):251–257. doi: 10.1016/0005-2744(75)90307-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES