Abstract
The results of more than 300 pairwise examinations of biochemical loci for joint segregation in brook trout (Salvelinus fontinalis) and in the hybridized genome of lake trout (S. namaycush) x brook trout are summarized. Nineteen loci have been assigned to the following eight linkage groupings on the basis of nonrandom assortment, including cases of both classical linkage and pseudolinkage: ODH with PMI with PGI-3, PGI-2 with SDH, ADA-1 with AGP-2, AAT-(1,2) with AGP-1 with MDH-1, MDH-3 with MDH-4, LDH-3 with LDH-4, IDH-3 with ME-2 and GUS with CPK-1. Pseudolinkage (an excess of nonparental progeny types) was observed only for male testcross parents. The results suggest that this phenomenon involves homeologous chromosome arms as evidenced by the de novo association of presumed duplicate loci in each case. Classical linkage has not been found for the five pairs of duplicate loci examined in Salvelinus, suggesting that not all of the eight metacentrics in the haploid complement involve fusions of homeologous chromosomes. Females consistently showed a greater degree of recombination.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aspinwall N. Genetic analysis of duplicate malate dehydrogenase loci in the pink salmon, Oncorhynchus gorbuscha. Genetics. 1974 Jan;76(1):64–72. [PMC free article] [PubMed] [Google Scholar]
- Davisson M. T., Wright J. E., Atherton L. M. Cytogenetic analysis of pseudolinkage of ldh Loci in the teleost genus salvelinus. Genetics. 1973 Apr;73(4):645–658. doi: 10.1093/genetics/73.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferris S. D., Whitt G. S. Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol. 1979 Apr 12;12(4):267–317. doi: 10.1007/BF01732026. [DOI] [PubMed] [Google Scholar]
- Gold J. R., Gall G. A. Chromosome cytology and polymorphism in the California High Sierra golden trout (Salmo aguabonita). Can J Genet Cytol. 1975 Mar;17(1):41–53. doi: 10.1139/g75-005. [DOI] [PubMed] [Google Scholar]
- Kimura M., King J. L. Fixation of a deleterious allele at one of two "duplicate" loci by mutation pressure and random drift. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2858–2861. doi: 10.1073/pnas.76.6.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markert C. L., Faulhaber I. Lactate dehydrogenase isozyme patterns of fish. J Exp Zool. 1965 Aug;159(3):319–332. doi: 10.1002/jez.1401590304. [DOI] [PubMed] [Google Scholar]
- OHNO S., STENIUS C., FAISST E., ZENZES M. T. POST-ZYGOTIC CHROMOSOMAL REARRANGEMENTS IN RAINBOW TROUT (SALMO IRIDEUS GIBBONS). Cytogenetics. 1965;4:117–129. doi: 10.1159/000129849. [DOI] [PubMed] [Google Scholar]
- SIMON R. C. Chromosome morphology and species evolution in the five North American species of Pacific salmon (Oncorhynchus). J Morphol. 1963 Jan;112:77–97. doi: 10.1002/jmor.1051120107. [DOI] [PubMed] [Google Scholar]
- Stoneking M., May B., Wright J. E., Jr Genetic variation, inheritance, and quaternary structure of malic enzyme in brook trout (Salvelinus fontinalis). Biochem Genet. 1979 Aug;17(7-8):599–619. doi: 10.1007/BF00502121. [DOI] [PubMed] [Google Scholar]
- Takahata N., Maruyama T. Polymorphism and loss of duplicate gene expression: a theoretical study with application of tetraploid fish. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4521–4525. doi: 10.1073/pnas.76.9.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utter F. M., Hodgins H. O. Phosphoglucomutase polymorphism in sockeye salmon. Comp Biochem Physiol. 1970 Sep 1;36(1):195–199. doi: 10.1016/0010-406x(70)90666-3. [DOI] [PubMed] [Google Scholar]