Abstract
We have characterized a small group of genes (13 loci) in the nematode Caenorhabditis elegans that, when mutated, confer resistance to the potent anthelmintic levamisole. Mutants at the 7 loci conferring the most extreme resistance generally possess almost identical visible and pharmacological phenotypes: uncoordinated motor behavior, most severe in early larval life, extreme resistance to cholinergic agonists and sensitivity to hypo-osmotic shock. Mutants with exceptional phenotypes suggest possible functions for several of the resistance loci. The most extreme mutants can readily be selected by their drug resistance (211 mutants, as many as 74 alleles of one gene). The more common resistance loci are likely to be unessential genes, while loci identified by only a few alleles may be essential genes or genes conferring resistance only when mutated in a special way. We propose that these mutants represent a favorable system for understanding how a small group of related genes function in a simple animal. The extreme drug resistance of these mutants makes them useful tools for the genetic manipulation of C. elegans. And, as the most resistant class of mutants might lack pharmacologically functional acetylcholine receptors (Lewis et al. 1980), these mutants may also be of some neurobiological significance.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullock M. W., Hand J. J., Waletzky E. Resolution and racemization of dl-tetramisole, dl-6-phenyl-2,3,5,6-tetrahydroimidazo-[2,1-b]thiazole. J Med Chem. 1968 Jan;11(1):169–171. [PubMed] [Google Scholar]
- Cassada R. C., Russell R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975 Oct;46(2):326–342. doi: 10.1016/0012-1606(75)90109-8. [DOI] [PubMed] [Google Scholar]
- Dusenbery D. B., Sheridan R. E., Russell R. L. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics. 1975 Jun;80(2):297–309. doi: 10.1093/genetics/80.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein H. F., Waterston R. H., Brenner S. A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J Mol Biol. 1974 Dec 5;90(2):291–300. doi: 10.1016/0022-2836(74)90374-x. [DOI] [PubMed] [Google Scholar]
- Hedgecock E. M., Russell R. L. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4061–4065. doi: 10.1073/pnas.72.10.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsh D., Oppenheim D., Klass M. Development of the reproductive system of Caenorhabditis elegans. Dev Biol. 1976 Mar;49(1):200–219. doi: 10.1016/0012-1606(76)90267-0. [DOI] [PubMed] [Google Scholar]
- Lewis J. A., Hodgkin J. A. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. J Comp Neurol. 1977 Apr 1;172(3):489–510. doi: 10.1002/cne.901720306. [DOI] [PubMed] [Google Scholar]
- Lewis J. A., Wu C. H., Levine J. H., Berg H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience. 1980;5(6):967–989. doi: 10.1016/0306-4522(80)90180-3. [DOI] [PubMed] [Google Scholar]
- Moerman D. G., Baillie D. L. Genetic Organization in CAENORHABDITIS ELEGANS: Fine-Structure Analysis of the unc-22 Gene. Genetics. 1979 Jan;91(1):95–103. doi: 10.1093/genetics/91.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raeymaekers A. H., Roevens L. F., Janssen P. A. The absolute configurations of the optical isomers of the broad spectrum anthelmintic tetramisole. Tetrahedron Lett. 1967 Apr;16:1467–1470. doi: 10.1016/s0040-4039(00)90983-3. [DOI] [PubMed] [Google Scholar]
