Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 May;95(2):521–532. doi: 10.1042/bj0950521

Isotopic studies of urea metabolism in rabbits

E Regoeczi 1, L Irons 1, A Koj 1,*, A S McFarlane 1
PMCID: PMC1214352  PMID: 14340103

Abstract

1. The half-life of [15N]urea was found to be significantly longer than that of [14C]urea injected at the same time, the differences being due to endogenous catabolism of urea, which is accompanied by little or no reutilization of 14C but is approx. 20% for 15N. [15N]Urea therefore appears to be valueless as an indicator of nitrogen metabolism unless the extents of endogenous catabolism of urea and of fractional reutilization of 15N can be separately estimated. 2. Though measurements of the radioactivity of expired 14CO2 confirmed the existence of considerable urea catabolism these could not be used for quantitative assessments. 3. Alternative graphical methods based on [14C]urea specific activities in plasma and urine samples were used to calculate the fraction of urea production that is excreted. Values by the two methods were in good agreement and showed that some animals excrete less than half the urea that they produce. 4. Specific activity differences between simultaneous samples of urinary and plasma urea reflect the presence of a pool of urea in the kidney that is not in equilibrium with the body urea pool. Calculations indicate the presence of urea in the kidney that in some cases may represent as much as 15% of the body pool, and in two animals in which post-mortem renal analyses were performed the masses of urea found agreed closely with the calculated values. 5. A model for urea metabolism is proposed that includes this pool in the excretory pathway. The related theory is shown to be adequate to explain the shape of the specific activity curves of urinary urea from the time of injection and the constant delay of the specific activity of urinary urea, relative to that of plasma urea, that is observed after a short preliminary equilibration period. 6. The body urea pool was calculated from the activity retained at 1·5hr. by excluding renal activity and the corrected specific activity of plasma urea at the same time. The urea pool was calculated to be distributed at the plasma concentration in a substantially smaller water volume than that found by injecting tritiated water in five animals. Reasons for this are discussed. 7. Urea synthesis rates calculated from the pool values are in close agreement with rates calculated from the mass of urea recovered in the urine and the fraction of newly synthesized urea that is excreted.

Full text

PDF
521

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN M. The effect of different pathological conditions on the excretion of urea in the rabbit kidney. Scand J Clin Lab Invest. 1961;13:249–263. [PubMed] [Google Scholar]
  2. BELDING M. E., KERN F., Jr Inhibition of urease by oxytetracycline. J Lab Clin Med. 1963 Apr;61:560–566. [PubMed] [Google Scholar]
  3. BERLINER R. W., LEVINSKY N. G., DAVIDSON D. G., EDEN M. Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med. 1958 May;24(5):730–744. doi: 10.1016/0002-9343(58)90377-2. [DOI] [PubMed] [Google Scholar]
  4. CHAO F-C, TARVER H. Breakdown of urea in the rat. Proc Soc Exp Biol Med. 1953 Nov;84(2):406–409. doi: 10.3181/00379727-84-20662. [DOI] [PubMed] [Google Scholar]
  5. CHARLWOOD P. A. MODELS AND THEORY FOR UREA METABOLISM. Biochem J. 1965 May;95:533–535. doi: 10.1042/bj0950533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHINARD F. P., ENNS T. Relative renal excretion patterns of sodium ion, chloride ion, urea, water and glomerular substances. Am J Physiol. 1955 Aug;182(2):247–250. doi: 10.1152/ajplegacy.1955.182.2.247. [DOI] [PubMed] [Google Scholar]
  7. CONWAY E. J., FITZGERALD O., McGEENEY K., GEOGHEGAN F. The location and origin of gastric urease. Gastroenterology. 1959 Oct;37:449–456. [PubMed] [Google Scholar]
  8. CRAWFORD J. D., DOYLE A. P., PROBST J. H. Service of urea in renal water conservation. Am J Physiol. 1959 Mar;196(3):545–548. doi: 10.1152/ajplegacy.1959.196.3.545. [DOI] [PubMed] [Google Scholar]
  9. ELSDEN S. R., ORMEROD J. G. The action of monofluoroacetate on the metabolism of Rhodospirillum rubrum. Biochem J. 1953 Jun 20;55(319TH):iii–iii. [PubMed] [Google Scholar]
  10. FITZGERALD O. The metabolism of urea in animal tissues. Biochem J. 1950 Jun-Jul;47(1):ix–ix. [PubMed] [Google Scholar]
  11. JAENIKE J. R. Urea enhancement of water reabsorption in the renal medulla. Am J Physiol. 1960 Dec;199:1205–1210. doi: 10.1152/ajplegacy.1960.199.6.1205. [DOI] [PubMed] [Google Scholar]
  12. JARAUSCH K. H., ULLRICH K. J. Untersuchungen zum Problem der Harnkonzentrierung und Harnverdünnung; Uber die Verteilung von Elektrolyten (Na, K, Ca, Mg, Cl, anorganischem Phosphat), Harnstoff, Aminosäuren und exogenem Kreatinin in Rinde und Mark der Hundeniere bei verschiedenen Diuresezuständen. Pflugers Arch. 1956;262(6):537–550. doi: 10.1007/BF00362116. [DOI] [PubMed] [Google Scholar]
  13. KORNBERG H. L., DAVIES R. E. Gastric urease. Physiol Rev. 1955 Jan;35(1):169–177. doi: 10.1152/physrev.1955.35.1.169. [DOI] [PubMed] [Google Scholar]
  14. KORNBERG H. L., DAVIES R. E., WOOD D. R. The activity and function of gastric urease in the cat. Biochem J. 1954 Mar;56(3):363–372. doi: 10.1042/bj0560363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KORNBERG H. L., DAVIES R. E., WOOD D. R. The breakdown of urea in cats not secreting gastric juice. Biochem J. 1954 Mar;56(3):355–363. doi: 10.1042/bj0560355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KORNBERG H. L., DAVIES R. E., WOOD D. R. The metabolism of [14C] urea in cats not secreting gastric juice. Biochem J. 1953 Jun 20;55(319TH):ii–ii. [PubMed] [Google Scholar]
  17. LASSITER W. E., GOTTSCHALK C. W., MYLLE M. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol. 1961 Jun;200:1139–1147. doi: 10.1152/ajplegacy.1961.200.6.1139. [DOI] [PubMed] [Google Scholar]
  18. LEVINSKY N. G., BERLINER R. W. Changes in composition of the urine in ureter and bladder at low urine flow. Am J Physiol. 1959 Mar;196(3):549–553. doi: 10.1152/ajplegacy.1959.196.3.549. [DOI] [PubMed] [Google Scholar]
  19. LEVINSKY N. G., BERLINER R. W. The role of urea in the urine concentrating mechanism. J Clin Invest. 1959 May;38(5):741–748. doi: 10.1172/JCI103854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LEVINSKY N. G., DAVIDSON D. G., BERLINER R. W. Effects of reduced glomerular filtration on urine concentration in the presence of antidiuretic hormone. J Clin Invest. 1959 May;38(5):730–740. doi: 10.1172/JCI103853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LIEBER C. S., LEFEVRE A. Ammonia as a source of gastric hypoacidity in patients with uremia. J Clin Invest. 1959 Aug;38(8):1271–1277. doi: 10.1172/JCI103902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leifer E., Roth L. J., Hempelmann L. H. Metabolism of C14-1abeled Urea. Science. 1948 Dec 31;108(2818):748–748. doi: 10.1126/science.108.2818.748. [DOI] [PubMed] [Google Scholar]
  23. Luck J. M. Ammonia Production by Animal Tissues in vitro: The use of Mixed Tissue Extracts. Biochem J. 1924;18(5):814–824. doi: 10.1042/bj0180814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MCFARLANE A. S., IRONS L., KOJ A., REGOECZI E. THE MEASUREMENT OF SYNTHESIS RATES OF ALBUMIN AND FIBRINOGEN IN RABBITS. Biochem J. 1965 May;95:536–540. doi: 10.1042/bj0950536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MCFARLANE A. S. MEASUREMENT OF SYNTHESIS RATES OF LIVER-PRODUCED PLASMA PROTEINS. Biochem J. 1963 Nov;89:277–290. doi: 10.1042/bj0890277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MOLLISON P. L., VEALL N. The use of the isotope 51Cr as a label for red cells. Br J Haematol. 1955 Jan;1(1):62–74. doi: 10.1111/j.1365-2141.1955.tb05489.x. [DOI] [PubMed] [Google Scholar]
  27. PINSON E. A., LANGHAM W. H. Physiology and toxicology of tritium in man. J Appl Physiol. 1957 Jan;10(1):108–126. doi: 10.1152/jappl.1957.10.1.108. [DOI] [PubMed] [Google Scholar]
  28. RAPPOPORT W. J., KERN F., Jr Gastric urease activity in normal subjects and in subjects with cirrhosis. J Lab Clin Med. 1963 Apr;61:550–559. [PubMed] [Google Scholar]
  29. REEVE E. B., PEARSON J. R., MARTZ D. C. Plasma protein synthesis in the liver: method for measurement of albumin formation in vivo. Science. 1963 Mar 8;139(3558):914–916. doi: 10.1126/science.139.3558.914. [DOI] [PubMed] [Google Scholar]
  30. SCHMIDT-NIELSEN B., O'DELL R. Effect of diet on distribution of urea and electrolytes in kidneys of sheep. Am J Physiol. 1959 Oct;197:856–860. doi: 10.1152/ajplegacy.1959.197.4.856. [DOI] [PubMed] [Google Scholar]
  31. SCHMIDT-NIELSEN B., O'DELL R. Structure and concentrating mechanism in the mammalian kidney. Am J Physiol. 1961 Jun;200:1119–1124. doi: 10.1152/ajplegacy.1961.200.6.1119. [DOI] [PubMed] [Google Scholar]
  32. SCHMIDT-NIELSEN B. Urea excretion in mammals. Physiol Rev. 1958 Apr;38(2):139–168. doi: 10.1152/physrev.1958.38.2.139. [DOI] [PubMed] [Google Scholar]
  33. WALSER M., BODENLOS L. J. Urea metabolism in man. J Clin Invest. 1959 Sep;38:1617–1626. doi: 10.1172/JCI103940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WOELLER F. H. Liquid scintillation counting of C-14-labelled CO2 with phenethylamine. Anal Biochem. 1961 Oct;2:508–511. doi: 10.1016/0003-2697(61)90056-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES