Skip to main content
Genetics logoLink to Genetics
. 1980 Nov;96(3):567–588. doi: 10.1093/genetics/96.3.567

Isolation of SPO12–1 and SPO13–1 from a Natural Variant of Yeast That Undergoes a Single Meiotic Division

Sue Klapholz 1,2, Rochelle Easton Esposito 1,2
PMCID: PMC1214362  PMID: 7021311

Abstract

ATCC4117 is a strain of S. cerevisiae that undergoes a single nuclear division during sporulation to produce asci containing two diploid ascospores (Grewal and Miller 1972). All clones derived from these spores are sporulation-capable and, like the parental strain, form two-spored asci. In this paper, we describe the genetic analysis of ATCC4117. In tetraploid hybrids of vegetative cells of the ATCC4117 diploid and a/a or α/α diploids, the production of two-spored asci is recessive. From these tetraploids, we have isolated two recessive alleles, designated spo12–1 and spo13–1, each of which alone results in the production of asci with two diploid or near-diploid spores. These alleles are unlinked and segregate as single nuclear genes. spo12–1 is approximately 22 cM from its centromere; spo13–1 has been localized to within 1 cM of arg4 on chromosome VIII. This analysis also revealed that ATCC4117 carries a diploidization gene allelic to or closely linked to HO, modifiers that reduce the number of haploid spores per ascus and alleles affecting the total level of sporulation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BELL J., KILLOUGH E., LABZOFFSKY N. A., PERCY W. J. Complement fixing antibodies in tuberculous guinea pigs. Can J Microbiol. 1956 Aug;2(5):461–464. doi: 10.1139/m56-055. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  3. Davidow L. S., Goetsch L., Byers B. Preferential Occurrence of Nonsister Spores in Two-Spored Asci of SACCHAROMYCES CEREVISIAE: Evidence for Regulation of Spore-Wall Formation by the Spindle Pole Body. Genetics. 1980 Mar;94(3):581–595. doi: 10.1093/genetics/94.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Esposito M. S., Esposito R. E. Mutants of meiosis and ascospore formation. Methods Cell Biol. 1975;11:303–326. doi: 10.1016/s0091-679x(08)60331-3. [DOI] [PubMed] [Google Scholar]
  6. Esposito M. S., Esposoto R. E., Moens P. B. Genetic analysis of two spored asci produced by the spo 3 mutant of Saccharomyces. Mol Gen Genet. 1974;135(2):91–95. doi: 10.1007/BF00264777. [DOI] [PubMed] [Google Scholar]
  7. Golin J. E., Esposito M. S. Evidence for joint genic control of spontaneous mutation and genetic recombination during mitosis in Saccharomyces. Mol Gen Genet. 1977 Jan 18;150(2):127–135. doi: 10.1007/BF00695392. [DOI] [PubMed] [Google Scholar]
  8. Grewal N. S., Miller J. J. Formation of asci with two diploid spores by diploid cells of Saccharomyces. Can J Microbiol. 1972 Dec;18(12):1897–1905. doi: 10.1139/m72-295. [DOI] [PubMed] [Google Scholar]
  9. Haber J. E., Halvorson H. O. Cell cycle dependency of sporulation in Saccharomyces cerevisiae. J Bacteriol. 1972 Mar;109(3):1027–1033. doi: 10.1128/jb.109.3.1027-1033.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hicks J. B., Herskowitz I. Interconversion of Yeast Mating Types I. Direct Observations of the Action of the Homothallism (HO) Gene. Genetics. 1976 Jun;83(2):245–258. doi: 10.1093/genetics/83.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hicks J. B., Strathern J. N., Herskowitz I. Interconversion of Yeast Mating Types III. Action of the Homothallism (HO) Gene in Cells Homozygous for the Mating Type Locus. Genetics. 1977 Mar;85(3):395–405. doi: 10.1093/genetics/85.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. James A. P. A new method of detecting centromere linkage in homothallic yeast. Genet Res. 1974 Apr;23(2):201–206. doi: 10.1017/s0016672300014828. [DOI] [PubMed] [Google Scholar]
  13. Klapholz S., Esposito R. E. Recombination and chromosome segregation during the single division meiosis in SPO12-1 and SPO13-1 diploids. Genetics. 1980 Nov;96(3):589–611. doi: 10.1093/genetics/96.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Küenzi M. T., Tingle M. A., Halvorson H. O. Sporulation of Saccharomyces cerevisiae in the absence of a functional mitochondrial genome. J Bacteriol. 1974 Jan;117(1):80–88. doi: 10.1128/jb.117.1.80-88.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liras P., McCusker J., Mascioli S., Haber J. E. Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis. Genetics. 1978 Apr;88(4 Pt 1):651–671. [PMC free article] [PubMed] [Google Scholar]
  16. Moens P. B., Esposito R. E., Esposito M. S. Aberrant nuclear behavior at meiosis and anucleate spore formation by sporulation-deficient (SPO) mutants of Saccharomyces cerevisiae. Exp Cell Res. 1974 Jan;83(1):166–174. doi: 10.1016/0014-4827(74)90700-9. [DOI] [PubMed] [Google Scholar]
  17. Moens P. B. Modification of sporulation in yeast strains with two-spored asci (Saccharomyces, Ascomycetes). J Cell Sci. 1974 Dec;16(3):519–527. doi: 10.1242/jcs.16.3.519. [DOI] [PubMed] [Google Scholar]
  18. Mortimer R. K., Hawthorne D. C. Genetic mapping in yeast. Methods Cell Biol. 1975;11:221–233. doi: 10.1016/s0091-679x(08)60325-8. [DOI] [PubMed] [Google Scholar]
  19. Roman H, Phillips M M, Sands S M. Studies of Polyploid Saccharomyces. I. Tetraploid Segregation. Genetics. 1955 Jul;40(4):546–561. doi: 10.1093/genetics/40.4.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shaffer B., Brearley I., Littlewood R., Fink G. R. A stable aneuploid of Saccharomyces cerevisiae. Genetics. 1971 Apr;67(4):483–495. doi: 10.1093/genetics/67.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sherman F. Use of micromanipulators in yeast studies. Methods Cell Biol. 1975;11:189–199. doi: 10.1016/s0091-679x(08)60323-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES