Skip to main content
Genetics logoLink to Genetics
. 1980 Nov;96(3):627–637. doi: 10.1093/genetics/96.3.627

Regulatory Genes Controlling Mitosis in the Fission Yeast SCHIZOSACCHAROMYCES POMBE

Paul Nurse 1,2, Pierre Thuriaux 1,2
PMCID: PMC1214365  PMID: 7262540

Abstract

Fifty-two wee mutants that undergo mitosis and cell division at a reduced size compared with wild type have been genetically analyzed. The mutants define two genes, wee1 and cdc2, which control the timing of mitosis. Fifty-one of the mutants map at the wee1 locus, which is unlinked to any known cdc gene. One of the wee1 alleles has been shown to be nonsense suppressible. The 52nd wee mutant maps within cdc2. Previously, only temperature-sensitive mutants that become blocked at mitosis have been found at the cdc2 locus. The simplest interpretation of these observations is that wee1+ codes for a negative element or inhibitor, and cdc2+ codes for a positive element or activator in the mitotic control. The gene dosage of wee1+ plays some role in determining the timing of mitosis, but the gene dosage of cdc2+ has little effect. However, some aspect of the cdc2 gene product activity is important for determining when mitosis takes place. The possible roles of wee1 and cdc2 in the mitotic control are discussed, with particular reference to the part they may play in the monitoring of cell size and cell growth rate, both of which influence the timing of mitosis.

Full Text

The Full Text of this article is available as a PDF (767.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fantes P. A. Control of cell size and cycle time in Schizosaccharomyces pombe. J Cell Sci. 1977 Apr;24:51–67. doi: 10.1242/jcs.24.1.51. [DOI] [PubMed] [Google Scholar]
  2. Fantes P. A., Grant W. D., Pritchard R. H., Sudbery P. E., Wheals A. E. The regulation of cell size and the control of mitosis. J Theor Biol. 1975 Mar;50(1):213–244. doi: 10.1016/0022-5193(75)90034-x. [DOI] [PubMed] [Google Scholar]
  3. Fantes P., Nurse P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res. 1977 Jul;107(2):377–386. doi: 10.1016/0014-4827(77)90359-7. [DOI] [PubMed] [Google Scholar]
  4. Hershko A., Mamont P., Shields R., Tomkins G. M. "Pleiotypic response". Nat New Biol. 1971 Aug;232(33):206–211. [PubMed] [Google Scholar]
  5. MITCHISON J. M. The growth of single cells. I. Schizosaccharomyces pombe. Exp Cell Res. 1957 Oct;13(2):244–262. doi: 10.1016/0014-4827(57)90005-8. [DOI] [PubMed] [Google Scholar]
  6. Sompayrac L., Maaloe O. Autorepressor model for control of DNA replication. Nat New Biol. 1973 Jan 31;241(109):133–135. doi: 10.1038/newbio241133a0. [DOI] [PubMed] [Google Scholar]
  7. Sturani E., Magnani F., Alberghina F. A. Inhibition of ribosomal RNA synthesis during a shift-down transition of growth in Neurospora crassa. Biochim Biophys Acta. 1973 Aug 24;319(2):153–164. doi: 10.1016/0005-2787(73)90006-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES