Skip to main content
Genetics logoLink to Genetics
. 1981 Mar;97(3-4):581–606. doi: 10.1093/genetics/97.3-4.581

Genetic and Developmental Analysis of a Temperature-Sensitive Minute Mutation of DROSOPHILA MELANOGASTER

Donald A R Sinclair 1, David T Suzuki 1, Thomas A Grigliatti 1
PMCID: PMC1214413  PMID: 6795082

Abstract

A temperature-sensitive (ts) third chromosome Minute (M) mutation, designated Q-III, has been recovered and characterized. Q-III heterozygotes raised at 29° exhibit all of the dominant traits of M mutants including small bristles, rough eyes, prolonged development, reduced viability and interactions with several unrelated mutations. Q-III homozygotes raised at 29° are lethal; death occurs primarily during the first larval instar. When raised at 22°, Q-III heterozygotes are phenotypically normal and Q-III homozygotes display moderate M traits. In addition, Q-III elicits ts sterility and maternal-effect lethality. As it true of M lesions, the dominant traits of Q-III are not expressed in triploid females raised at 29°. Complementation tests suggest that Q-III is a ts allele of M(3)LS4, which is located in 3L near the centromere.—Reciprocal temperature-shift experiments revealed that the temperature-sensitive period (TSP) of Q-III lethality is polyphasic, extending from the first instar to the latter half of pupation. Heat-pulse experiments further resolved this into two post-embryonic TSPs: one occurring during the latter half of the second larval instar, and the other extending from the larval/pupal boundary to the second half of pupation. In addition, heat pulses elicited a large number of striking adult phenotypes in Q-III individuals. These included pattern alterations such as deficiencies and duplications and other morphological defects in structures produced by the eye-antennal, leg, wing and genital imaginal discs and the abdominal histoblasts. Each defect or pattern alteration is associated with a specific TSP during development.—We favor the interpretation that most of the major Q-III defects, particularly the structural duplications and deficiencies, result from temperature-induced cell death in mitotically active imaginal anlagen, while the small macrochaete phene probably results from the direct effects of Q-III on bristle synthesis. The hypothesis that the Q-III locus specifices a component required for protein synthesis is discussed, and it is concluded that this hypothesis can account for the pleiotropy of Q-III, and that perhaps it can be extended to M loci in general.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arking R. Temperature-sensitive cell-lethal mutants of drosophila: isolation and characterization. Genetics. 1975 Jul;(3):519–537. doi: 10.1093/genetics/80.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brehme K S. A Study of the Effect on Development of "Minute" Mutations in Drosophila Melanogaster. Genetics. 1939 Mar;24(2):131–161. doi: 10.1093/genetics/24.2.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Capecchi M. R., Hughes S. H., Wahl G. M. Yeast super-suppressors are altered tRNAs capable of translating a nonsense codon in vitro. Cell. 1975 Nov;6(3):269–277. doi: 10.1016/0092-8674(75)90178-6. [DOI] [PubMed] [Google Scholar]
  4. Dudick M. E., Wright T. R., Brothers L. L. The developmental genetics of the temperature sensitive lethal allele of the suppressor of forked, 1(1)su(f)ts67g, in Drosophila melanogaster. Genetics. 1974 Mar;76(3):487–510. doi: 10.1093/genetics/76.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunn R. T., Foster L. B. Radioassay of serum folate. Clin Chem. 1973 Oct;19(10):1101–1105. [PubMed] [Google Scholar]
  6. Dunn R., Hayashi S., Gillam I. C., Delaney A. D., Tener G. M., Grigliatti T. A., Kaufman T. C., Suzuki D. T. Genes coding for valine transfer ribonucleic acid-3b in Drosophila melanogaster. J Mol Biol. 1979 Mar 5;128(3):277–287. doi: 10.1016/0022-2836(79)90088-3. [DOI] [PubMed] [Google Scholar]
  7. Falke E. V., Wright T. R. Cold-sensitive mutants of Drosophila melanogaster defective in ribosome assembly. Genetics. 1975 Dec;81(4):655–682. doi: 10.1093/genetics/81.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farnsworth M W. Effects of the Homozygous Minute-IV Deficiency on the Development of Drosophila Melanogaster. Genetics. 1957 Jan;42(1):7–18. doi: 10.1093/genetics/42.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. French V., Bryant P. J., Bryant S. V. Pattern regulation in epimorphic fields. Science. 1976 Sep 10;193(4257):969–981. doi: 10.1126/science.948762. [DOI] [PubMed] [Google Scholar]
  10. Garcia-Bellido A., Merriam J. R. Clonal parameters of tergite development in Drosophila. Dev Biol. 1971 Oct;26(2):264–276. doi: 10.1016/0012-1606(71)90126-6. [DOI] [PubMed] [Google Scholar]
  11. Hayashi S., Gillam I. C., Delaney A. D., Dunn R., Tener G. M., Grigliatti T. A., Suzuki D. T. Hybridization of tRNAs of Drosophila melanogaster to polytene chromosomes. Chromosoma. 1980;76(1):65–84. doi: 10.1007/BF00292227. [DOI] [PubMed] [Google Scholar]
  12. Howells A. J. Levels of RNA and DNA in Drosophila melanogaster at different stages of development: a comparison between one bobbed and two phenotypically non-bobbed stocks. Biochem Genet. 1972 Apr;6(2):217–230. doi: 10.1007/BF00486405. [DOI] [PubMed] [Google Scholar]
  13. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Procunier J. D., Dunn R. J. Genetic and molecular organization of the 5S locus and mutants in D. melanogaster. Cell. 1978 Nov;15(3):1087–1093. doi: 10.1016/0092-8674(78)90292-1. [DOI] [PubMed] [Google Scholar]
  15. Procunier J. D., Tartof K. D. Genetic analysis of the 5S RNA genes in Drosophila melanogaster. Genetics. 1975 Nov;81(3):515–523. doi: 10.1093/genetics/81.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ritossa F. M., Atwood K. C., Spiegelman S. On the redundancy of DNA complementary to amino acid tranfer RNA and its absence from the nucleolar organizer region of Drosophila melanogaster. Genetics. 1966 Aug;54(2):663–676. doi: 10.1093/genetics/54.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Russell M. A. Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev Biol. 1974 Sep;40(1):24–39. doi: 10.1016/0012-1606(74)90104-3. [DOI] [PubMed] [Google Scholar]
  18. Schultz J. The Minute Reaction in the Development of DROSOPHILA MELANOGASTER. Genetics. 1929 Jul;14(4):366–419. doi: 10.1093/genetics/14.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shellenbarger D. L., Mohler J. D. Temperature-sensitive periods and autonomy of pleiotropic effects of l(1)Nts1, a conditional notch lethal in Drosophila. Dev Biol. 1978 Feb;62(2):432–446. doi: 10.1016/0012-1606(78)90226-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES