Abstract
The genetic determination of resistance to the sterility-producing genetic elements called P factors was studied in a strain characterized as neutral (Q) in the P-M system of hybrid dysgenesis. Sixteen lines were synthesized, representing all possible homozygous combinations of the three major chromosomes and differing maternal cytoplasms of an original resistant (Q) and susceptible (M) strain.—The results provide a detailed genetic analysis of the determination of cytotype (which mediates resistance or susceptibility to P factors) in the absence of the P-M dysgenic interaction. They extend the findings of Engels (1979) by providing specific information on both the location and relative magnitude of effect of cytotype-determining chromosomal factors and their interaction over time with maternally transmitted cytoplasm.—Cytotype was found to be primarily controlled by the genotype, but the maternal cytoplasm, under some circumstances, has an important short-term effect. Major cytotype-determining chromosomal factors are localized to the distal half of the X chromosome. However, there was also evidence for minor factors located on the major autosomes, particularly chromosome 3. Under certain circumstances, cytotypic switches in either direction can be produced in a single generation by the substitution of an X chromosome carrying a major cytotype determinant. This may provide an explanation of why reciprocal differences have sometimes been interpreted as direct effects of X-chromosome suppressors. However, slow but systematic changes of M to P cytotype were observed in five synthesized lines of mixed origin over twenty generations with no chromosomal substitution. Alternative explanations of these changes in terms of delayed effects of minor autosomal factors or of the transposability of cytotype determinants are discussed.
Full Text
The Full Text of this article is available as a PDF (968.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bregliano J. C., Picard G., Bucheton A., Pelisson A., Lavige J. M., L'Heritier P. Hybrid dysgenesis in Drosophila melanogaster. Science. 1980 Feb 8;207(4431):606–611. doi: 10.1126/science.6766221. [DOI] [PubMed] [Google Scholar]
- Kidwell M. G., Kidwell J. F. Cytoplasm-chromosome interactions in prosophila melanogaster. Nature. 1975 Feb 27;253(5494):755–756. doi: 10.1038/253755a0. [DOI] [PubMed] [Google Scholar]
- Kidwell M. G., Kidwell J. F., Sved J. A. Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination. Genetics. 1977 Aug;86(4):813–833. doi: 10.1093/genetics/86.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidwell M. G., Novy J. B., Feeley S. M. Rapid unidirectional change of hybrid dysgenesis potential in Drosophila. J Hered. 1981 Jan-Feb;72(1):32–38. doi: 10.1093/oxfordjournals.jhered.a109422. [DOI] [PubMed] [Google Scholar]
- Kidwell M. G., Novy J. B. Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: Sterility Resulting from Gonadal Dysgenesis in the P-M System. Genetics. 1979 Aug;92(4):1127–1140. doi: 10.1093/genetics/92.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picard G., Bregliano J. C., Bucheton A., Lavige J. M., Pelisson A., Kidwell M. G. Non-mendelian female sterility and hybrid dysgenesis in Drosophila melanogaster. Genet Res. 1978 Nov;32(3):275–287. doi: 10.1017/s0016672300018772. [DOI] [PubMed] [Google Scholar]
- Simmons M. J., Johnson N. A., Fahey T. M., Nellett S. M., Raymond J. D. High mutability in male hybrids of Drosophila melanogaster. Genetics. 1980 Oct;96(2):479–480. doi: 10.1093/genetics/96.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatko B. E. Evidence for Newly Induced Genetic Activity Responsible for Male Recombination Induction in DROSOPHILA MELANOGASTER. Genetics. 1978 Sep;90(1):105–124. doi: 10.1093/genetics/90.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatko B. E., Hiraizumi Y. Elements causing male crossing over in Drosophila melanogaster. Genetics. 1975 Oct;81(2):313–324. doi: 10.1093/genetics/81.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voelker R. A. The genetics and cytology of a mutator factor in Drosophila melanogaster. Mutat Res. 1974 Mar;22(3):265–276. doi: 10.1016/0027-5107(74)90027-x. [DOI] [PubMed] [Google Scholar]
- Yannopoulos G. Progressive resistance against the male recombination factor 31.1 MRF acquired by Drosophila melanogaster. Experientia. 1978 Aug 15;34(8):1000–1002. doi: 10.1007/BF01915311. [DOI] [PubMed] [Google Scholar]