Abstract
Allozyme balances serve as markers of quantitative behavior of electrophoretically distinguishable alleles. By the use of ADH Set I allozyme balances, it is demonstrated that all Adh1-S/Adh1-F individuals from more than 20 diverse S/F families exhibit a reciprocal correlation between Adh1 quantitative behavior in two maize organs: the scutellum and primary root. Within an electrophoretic mobility class, the Adh1 allele that is relatively underexpressed in the scutellum is relatively overexpressed in the primary root, and vice versa. Segregation tests prove that this "reciprocal effect" is the property of a cis-acting site that is closely linked to or within the Adh1 structural gene, and it is not affected by diverse genetic backgrounds. Immunological and [3H]-leucine incorporation experiments establish that Adh1 quantitative variants differ in ADH1·ADH1 synthetic rates in the anaerobic primary root. The reciprocal-effect phenomenon suggests that the cis-acting loci controlling Adh1 quantitative expression in each respective organ are at least in close proximity, or may share common DNA sequences. We discuss the possibility that the reciprocal-effect locus is a regulatory component of the Adh1 cistron.
Full Text
The Full Text of this article is available as a PDF (7.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham I., Doane W. W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4446–4450. doi: 10.1073/pnas.75.9.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogenhagen D. F., Sakonju S., Brown D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region. Cell. 1980 Jan;19(1):27–35. doi: 10.1016/0092-8674(80)90385-2. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Boubelík M., Lengerová A., Bailey D. W., Matousek V. A model for genetic analysis of programmed gene expression as reflected in the development of membrane antigens. Dev Biol. 1975 Nov;47(1):206–214. doi: 10.1016/0012-1606(75)90274-2. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Breen G. A., Lusis A. J., Paigen K. Linkage of genetic determinants for mouse beta-galactosidase electrophoresis and activity. Genetics. 1977 Jan;85(1):73–84. doi: 10.1093/genetics/85.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britten R. J., Davidson E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol. 1971 Jun;46(2):111–138. doi: 10.1086/406830. [DOI] [PubMed] [Google Scholar]
- Freeling M., Schwartz D. Genetic relationships between the multiple alcohol dehydrogenases of maize. Biochem Genet. 1973 Jan;8(1):27–36. doi: 10.1007/BF00485554. [DOI] [PubMed] [Google Scholar]
- Hall B. G. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for ebg enzyme in E. coli. Genetics. 1978 Jul;89(3):453–465. doi: 10.1093/genetics/89.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly J., Freeling M. Purification of maize alcohol dehydrogenase-1 allozymes and comparison of their tryptic peptides. Biochim Biophys Acta. 1980 Jul 24;624(1):102–110. doi: 10.1016/0005-2795(80)90229-9. [DOI] [PubMed] [Google Scholar]
- King M. C., Wilson A. C. Evolution at two levels in humans and chimpanzees. Science. 1975 Apr 11;188(4184):107–116. doi: 10.1126/science.1090005. [DOI] [PubMed] [Google Scholar]
- Lusis A. J., West J. D. X-linked and autosomal genes controlling mouse alpha-galactosidase expression. Genetics. 1978 Feb;88(2):327–342. doi: 10.1093/genetics/88.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paigen K., Swank R. T., Tomino S., Ganschow R. E. The molecular genetics of mammalian glucuronidase. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):379–392. doi: 10.1002/jcp.1040850406. [DOI] [PubMed] [Google Scholar]
- Prakash S. Allelic Variants at the Xanthine Dehydrogenase Locus Affecting Enzyme Activity in DROSOPHILA PSEUDOOBSCURA. Genetics. 1977 Sep;87(1):159–168. doi: 10.1093/genetics/87.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz D., Endo T. Alcohol Dehydrogenase Polymorphism in Maize-simple and Compound Loci. Genetics. 1966 Apr;53(4):709–715. doi: 10.1093/genetics/53.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz D. Genetic Studies on Mutant Enzymes in Maize. III. Control of Gene Action in the Synthesis of Ph 7.5 Esterase. Genetics. 1962 Nov;47(11):1609–1615. doi: 10.1093/genetics/47.11.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward R. D. Alcohol dehydrogenase activity in Drosophila melanogaster: a quantitative character. Genet Res. 1975 Aug;26(1):81–93. doi: 10.1017/s0016672300015871. [DOI] [PubMed] [Google Scholar]
- Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]