Abstract
A model of evolutionary base substitutions that can incorporate different substitutional rates between the four bases and that takes into account unequal composition of bases in DNA sequences is proposed. Using this model, we derived formulae that enable us to estimate the evolutionary distances in terms of the number of nucleotide substitutions through comparative studies of nucleotide sequences. In order to check the validity of various formulae, Monte Carlo experiments were performed. These formulae were applied to analyze data on DNA sequences from diverse organisms. Particular attention was paid to problems concerning a globin pseudogene in the mouse and the time of its origin through duplication. We obtained a result suggesting that the evolutionary rates of substitution in the first and second codon positions of the pseudogene were roughly 10 times faster than those in the normal globin genes; whereas, the rate in the third position remained almost unchanged. Application of our formulae to histone genes H2B and H3 of the sea urchin showed that, in each of these genes, the rate in the third codon position is tremendously higher than that in the second position. All of these observations can easily and consistently be interpreted by the neutral theory of molecular evolution.
Full Text
The Full Text of this article is available as a PDF (945.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
- Hardison R. C., Butler E. T., 3rd, Lacy E., Maniatis T., Rosenthal N., Efstratiadis A. The structure and transcription of four linked rabbit beta-like globin genes. Cell. 1979 Dec;18(4):1285–1297. doi: 10.1016/0092-8674(79)90239-3. [DOI] [PubMed] [Google Scholar]
- Holmquist R. Evolutionary analysis of alpha and beta hemoglobin genes by REH theory under the assumption of the equiprobability of genetic events. J Mol Evol. 1980 May;15(2):149–159. doi: 10.1007/BF01732667. [DOI] [PubMed] [Google Scholar]
- Holmquist R., Pearl D. Theoretical foundations for quantitative paleogenetics. Part III: The molecular divergence of nucleic acids and proteins for the case of genetic events of unequal probability. J Mol Evol. 1980 Dec;16(3-4):211–267. doi: 10.1007/BF01804977. [DOI] [PubMed] [Google Scholar]
- Kedes L. H. Histone genes and histone messengers. Annu Rev Biochem. 1979;48:837–870. doi: 10.1146/annurev.bi.48.070179.004201. [DOI] [PubMed] [Google Scholar]
- Miyata T., Yasunaga T., Nishida T. Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7328–7332. doi: 10.1073/pnas.77.12.7328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ota T., Kimura M. On the constancy of the evolutionary rate of cistrons. J Mol Evol. 1971;1(1):18–25. doi: 10.1007/BF01659391. [DOI] [PubMed] [Google Scholar]
- Proudfoot N. J., Maniatis T. The structure of a human alpha-globin pseudogene and its relationship to alpha-globin gene duplication. Cell. 1980 Sep;21(2):537–544. doi: 10.1016/0092-8674(80)90491-2. [DOI] [PubMed] [Google Scholar]
- Schaffner W., Kunz G., Daetwyler H., Telford J., Smith H. O., Birnstiel M. L. Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing. Cell. 1978 Jul;14(3):655–671. doi: 10.1016/0092-8674(78)90249-0. [DOI] [PubMed] [Google Scholar]
- Sures I., Lowry J., Kedes L. H. The DNA sequence of sea urchin (S. purpuratus) H2A, H2B and H3 histone coding and spacer regions. Cell. 1978 Nov;15(3):1033–1044. doi: 10.1016/0092-8674(78)90287-8. [DOI] [PubMed] [Google Scholar]
- Vanin E. F., Goldberg G. I., Tucker P. W., Smithies O. A mouse alpha-globin-related pseudogene lacking intervening sequences. Nature. 1980 Jul 17;286(5770):222–226. doi: 10.1038/286222a0. [DOI] [PubMed] [Google Scholar]