Skip to main content
Genetics logoLink to Genetics
. 1981 Aug;98(4):729–745. doi: 10.1093/genetics/98.4.729

LAC4 Is the Structural Gene for β-Galactosidase in KLUYVEROMYCES LACTIS

R Michael Sheetz 1, Robert C Dickson 1
PMCID: PMC1214471  PMID: 6800877

Abstract

Using genetic and biochemical techniques, we have determined that β-galactosidase in the yeast Kluyveromyces lactis is coded by the LAC4 locus. The following data support this conclusion: (1) mutations in this locus result in levels of β-galactosidase activity 100-fold lower than levels in uninduced wild type and all other lac- mutants; (2) three of five lac4 mutations are suppressible by an unlinked suppressor whose phenotype suggests that it codes for a nonsense suppressor tRNA; (3) a Lac+ revertant, bearing lac4–14 and this unlinked suppressor, has subnormal levels of β-galactosidase activity, and the Km for hydrolysis of o-nitrophenyl-β, D-galactoside and the thermal stability of the enzyme are altered; (4) the level of β-galactosidase activity per cell is directly proportional to the number of copies of LAC4; (5) analysis of cell-free extracts of strains bearing mutations in LAC4 by two-dimensional acryl-amide gel electrophoresis shows that strains bearing lac4–23 and lac4–30 contain an inactive β-galactosidase whose subunit co-electrophoreses with the wild-type subunit, while no subunit or fragment of the subunit is observable in lac4–8, lac4–14 or lac4–29 mutants; (6) of all lac4 mutants, only those bearing lac4–23 or lac4–30 contain a protein that cross-reacts with anti-β-galactosidase antibody, a finding consistent with the previous result; and (7) β-galactosidase activity in several Lac+ revertants of strains carrying lac4–23 or lac4–30 has greatly decreased thermostability.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dickson R. C., Dickson L. R., Markin J. S. Purification and properties of an inducible beta-galactosidase isolated from the yeast Kluyveromyces lactis. J Bacteriol. 1979 Jan;137(1):51–61. doi: 10.1128/jb.137.1.51-61.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gesteland R. F., Wolfner M., Grisafi P., Fink G., Botstein D., Roth J. R. Yeast suppressors of UAA and UAG nonsense codons work efficiently in vitro via tRNA. Cell. 1976 Mar;7(3):381–390. doi: 10.1016/0092-8674(76)90167-7. [DOI] [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  5. Pringle J. R. Methods for avoiding proteolytic artefacts in studies of enzymes and other proteins from yeasts. Methods Cell Biol. 1975;12:149–184. doi: 10.1016/s0091-679x(08)60956-5. [DOI] [PubMed] [Google Scholar]
  6. Sheetz R. M., Dickson R. C. Mutations affecting synthesis of beta-galactosidase activity in the yeast Kluyveromyces lactis. Genetics. 1980 Aug;95(4):877–890. doi: 10.1093/genetics/95.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES