Skip to main content
Genetics logoLink to Genetics
. 1981 Aug;98(4):747–762. doi: 10.1093/genetics/98.4.747

Further Evidence for Lack of Gene Expression in the Tetrahymena Micronucleus

Kristen A Mayo 1, Eduardo Orias 1
PMCID: PMC1214472  PMID: 7333457

Abstract

Certain galA mutations in the ciliated protozoan Tetrahymena thermophila confer an almost total loss of galactokinase activity in homozygotes. Heterokaryons have been constructed that are homogeneous for the galA1 mutation in the (45n) macronucleus, but which contain a galA+ (2n) micronucleus. Soluble cell extracts prepared from these heterokaryons have been assayed for galactokinase activity, using a radiometric assay for the conversion of galactose to galactose-1-phosphate (gal-1-P). No galactokinase activity attributable to the micronuclear genes is observed in such heterokaryons. These results, obtained with the galA1 marker, provide the first direct, quantitative evidence for the lack of micronuclear (germ line) gene expression in Tetrahymena during vegetative growth, and substantiate the predictions of previous phenotypic observations on heterokaryons and autoradiographic studies of micronuclear RNA synthesis. The generality of this conclusion will be established in the future when other enzymically assayable mutations become available for similar studies.

Full Text

The Full Text of this article is available as a PDF (952.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. L. Genomic exclusion: a rapid means for inducing homozygous diploid lines in Tetrahymena pyriformis, syngen 1. Science. 1967 Feb 3;155(3762):575–577. doi: 10.1126/science.155.3762.575. [DOI] [PubMed] [Google Scholar]
  2. Flickinger C. J. The fine structure of the nuclei of Tetrahymena pyriformis throughout the cell cycle. J Cell Biol. 1965 Dec;27(3):519–529. doi: 10.1083/jcb.27.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gorovsky M. A., Hattman S., Pleger G. L. ( 6 N)methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis. J Cell Biol. 1973 Mar;56(3):697–701. doi: 10.1083/jcb.56.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gorovsky M. A. Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure and function of eukaryotic nuclei. J Protozool. 1973 Feb;20(1):19–25. doi: 10.1111/j.1550-7408.1973.tb05995.x. [DOI] [PubMed] [Google Scholar]
  5. Johmann C. A., Gorovsky M. A. Immunofluorescence evidence for the absence of histone H1 in a mitotically dividing, genetically inactive nucleus. J Cell Biol. 1976 Oct;71(1):89–95. doi: 10.1083/jcb.71.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martindale D. W., Pearlman R. E. An enrichment for temperature-sensitive mutants in Tetrahymena thermophila. Genetics. 1979 Aug;92(4):1079–1092. doi: 10.1093/genetics/92.4.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. NANNEY D. L., REEVE S. J., NAGEL J., DEPINTO S. H serotype differentiation in Tetrahymena. Genetics. 1963 Jun;48:803–813. doi: 10.1093/genetics/48.6.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nanney D. L., McCoy J. W. Characterization of the species of the Tetrahymena pyriformis complex. Trans Am Microsc Soc. 1976 Oct;95(4):664–682. [PubMed] [Google Scholar]
  9. Roberts C. T., Jr, Orias E. Cytoplasmic inheritance of chloramphenicol resistance in tetrahymena. Genetics. 1973 Feb;73(2):259–272. doi: 10.1093/genetics/73.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yao M. C., Gorovsky M. A. Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis. Chromosoma. 1974;48(1):1–18. doi: 10.1007/BF00284863. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES