Skip to main content
Genetics logoLink to Genetics
. 1981 Sep;99(1):49–64. doi: 10.1093/genetics/99.1.49

Male-Sterilizing Interactions between Duplications and Deficiencies for Proximal X-Chromosome Material in DROSOPHILA MELANOGASTER

Rezaur Rahman 1, Dan L Lindsley 1
PMCID: PMC1214491  PMID: 6804302

Abstract

The genetic limits of sixty-four deficiencies in the vicinity of the euchromatic-heterochromatic junction of the X chromosome were mapped with respect to a number of proximal recessive lethal mutations. They were also tested for male fertility in combination with three Y chromosomes carrying different amounts of proximal X-chromosome-derived material (BSYy+, y+Ymal126 and y+Ymal+). All deficiencies that did not include the locus of bb and a few that did were male-fertile in all male-viable Df(1)/Dp(1;Y) combinations. Nineteen bb deficiencies fell into six different classes by virtue of their male-fertility phenotypes when combined with the duplicated Y chromosomes. The six categories of deficiencies are consistent with a formalism that invokes three factors or regions at the base of the X, one distal and two proximal to bb, which bind a substance critical for precocious inactivation of the X chromosome in the primary spermatocyte. Free duplications carrying these regions or factors compete for the substance in such a way that, in the presence of such duplications, proximally deficient X chromosomes are unable to command sufficient substance for proper control of X-chromosome gene activity preparatory to spermatogenesis. We conclude that there is no single factor at the base of the X that is required for the fertility of males whose genotype is otherwise normal.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brosseau G E, Nicoletti B, Grell E H, Lindsley D L. Production of Altered Y Chromosomes Bearing Specific Sections of the X Chromosome in Drosophila. Genetics. 1961 Mar;46(3):339–346. doi: 10.1093/genetics/46.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dudick M. E., Wright T. R., Brothers L. L. The developmental genetics of the temperature sensitive lethal allele of the suppressor of forked, 1(1)su(f)ts67g, in Drosophila melanogaster. Genetics. 1974 Mar;76(3):487–510. doi: 10.1093/genetics/76.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gatti M., Pimpinelli S., Santini G. Characterization of Drosophila heterochromatin. I. Staining and decondensation with Hoechst 33258 and quinacrine. Chromosoma. 1976 Sep 24;57(4):351–375. doi: 10.1007/BF00332160. [DOI] [PubMed] [Google Scholar]
  4. Lifschytz E., Falk R. Fine structure analysis of a chromosome segment in Drosophila melanogaster. Analysis of x-ray-induced lethals. Mutat Res. 1968 Sep-Oct;6(2):235–244. doi: 10.1016/0027-5107(68)90039-0. [DOI] [PubMed] [Google Scholar]
  5. Lifschytz E. Fine-Structure Analysis and Genetic Organization at the Base of the X Chromosome in DROSOPHILA MELANOGASTER. Genetics. 1978 Mar;88(3):457–467. doi: 10.1093/genetics/88.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lifschytz E., Lindsley D. I. Sex chromosome activation during spermatogenesis. Genetics. 1974 Sep;78(1):323–331. doi: 10.1093/genetics/78.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lifschytz E., Lindsley D. L. The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation). Proc Natl Acad Sci U S A. 1972 Jan;69(1):182–186. doi: 10.1073/pnas.69.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindsley D L, Edington C W, Von Halle E S. Sex-Linked Recessive Lethals in Drosophila Whose Expression Is Suppressed by the Y Chromosome. Genetics. 1960 Dec;45(12):1649–1670. doi: 10.1093/genetics/45.12.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lindsley D L, Sandler L. The Meiotic Behavior of Grossly Deleted X Chromosomes in Drosophila Melanogaster. Genetics. 1958 May;43(3):547–563. doi: 10.1093/genetics/43.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Procunier J. D., Tartof K. D. A genetic locus having trans and contiguous cis functions that control the disproportionate replication of ribosomal RNA genes in Drosophila melanogaster. Genetics. 1978 Jan;88(1):67–79. doi: 10.1093/genetics/88.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schalet A. Exchanges at the bobbed locus of Drosophila melanogaster. Genetics. 1969 Sep;63(1):133–153. doi: 10.1093/genetics/63.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schalet A., Lefevre G., Jr The localization of "ordinary" sex-linked genes in section 20 of the polytene X chromosome of Drosophila melanogaster. Chromosoma. 1973 Nov 21;44(2):183–202. doi: 10.1007/BF00329116. [DOI] [PubMed] [Google Scholar]
  13. Tartof K. D. Regulation of ribosomal RNA gene multiplicity in Drosophila melanogaster. Genetics. 1973 Jan;73(1):57–71. doi: 10.1093/genetics/73.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yamamoto M., Miklos G. L. Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the functions of satellite DNA. Chromosoma. 1978 Mar 22;66(1):71–98. doi: 10.1007/BF00285817. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES