Skip to main content
Genetics logoLink to Genetics
. 1981 Nov;99(3-4):383–403. doi: 10.1093/genetics/99.3-4.383

Evidence of Chromosomal Breaks near the Mating-Type Locus of SACCHAROMYCES CEREVISIAE That Accompany MATα xMATα Matings

John H McCusker 1,2, James E Haber 1,2
PMCID: PMC1214509  PMID: 17249125

Abstract

In order for two heterothallic MATα haploids of Saccharomyces cerevisiae to mate, one parent must apparently become, at least transiently, an a-like cell. Only about 25% of the matings result from an actual transposition of MATa sequences to replace MATα, and about 1% result from a deletion joining MAT to the normally silent HMRa allele. The majority of matings occur after an apparent chromosome break that deletes MATα and all of the known markers more distal on the right arm of chromosome III.——The chromosome break occurs at or very near MAT, invariably leaving the distal marker tsm1 hemizygous, but the closely linked proximal marker cry1 usually is heterozygous. The resulting diploid containing the broken chromosome is mitotically unstable; about 10% of the colonies contain visible sectors in which the rest of the broken chromosome is lost. The region close to the breakpoint (i.e., cry1) is unusually active in recombination. About 20% of the intact homologues remaining after chromosome loss were gene-converted for cry1. In addition, the broken end participated in reciprocal recombination events that joined the chromosome to the distal portion of the intact homologous chromosome.——The unstable diploids may also become stable and no longer give rise to mitotic segregants. We have found two distinct ways in which stabilization occurs. Most often the diploid becomes euploid by a recombination event that yields a cell homozygous for all markers distal to (and sometimes including) cry1. In one of 9 cases so far analyzed, the stable diploid was still hemizygous for MATα and for other markers distal to MAT. This last case is similar to the healing of broken chromosomes in maize described by McClintock (1939, 1941, 1951).

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HAWTHORNE D. C. A DELETION IN YEAST AND ITS BEARING ON THE STRUCTURE OF THE MATING TYPE LOCUS. Genetics. 1963 Dec;48:1727–1729. doi: 10.1093/genetics/48.12.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Haber J. E., Rogers D. T., McCusker J. H. Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination. Cell. 1980 Nov;22(1 Pt 1):277–289. doi: 10.1016/0092-8674(80)90175-0. [DOI] [PubMed] [Google Scholar]
  3. Meade J. H., Riley M. I., Manney T. R. Expression of cryptopleurine resistance in Saccharomyces cerevisiae. J Bacteriol. 1977 Mar;129(3):1428–1434. doi: 10.1128/jb.129.3.1428-1434.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae. Microbiol Rev. 1980 Dec;44(4):519–571. doi: 10.1128/mr.44.4.519-571.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Shaffer B., Brearley I., Littlewood R., Fink G. R. A stable aneuploid of Saccharomyces cerevisiae. Genetics. 1971 Apr;67(4):483–495. doi: 10.1093/genetics/67.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Strathern J. N., Spatola E., McGill C., Hicks J. B. Structure and organization of transposable mating type cassettes in Saccharomyces yeasts. Proc Natl Acad Sci U S A. 1980 May;77(5):2839–2843. doi: 10.1073/pnas.77.5.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES