Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1964 Jul;92(1):147–158. doi: 10.1042/bj0920147

Respiratory control by an adenosine triphosphatase involved in active transport in brain cortex

R Whittam 1, D M Blond 1
PMCID: PMC1215452  PMID: 4221018

Full text

PDF
147

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRIDGE W. N. Adenosine triphosphatase in the microsomal fraction from rat brain. Biochem J. 1962 Jun;83:527–533. doi: 10.1042/bj0830527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BALAZS R. The point of the aerobic inhibition of glycolytic activity associated with brain mitochondria. Biochem J. 1959 Aug;72:561–574. doi: 10.1042/bj0720561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BONTING S. L., CARAVAGGIO L. L., HAWKINS N. M. Studies on sodium-potassium-activated adenosinetriphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides. Arch Biochem Biophys. 1962 Sep;98:413–419. doi: 10.1016/0003-9861(62)90206-0. [DOI] [PubMed] [Google Scholar]
  4. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  5. CUMMINS J., HYDEN H. Adenosine triphosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim Biophys Acta. 1962 Jul 2;60:271–283. doi: 10.1016/0006-3002(62)90403-1. [DOI] [PubMed] [Google Scholar]
  6. DEUL D. H., McILWAIN H. Activation and inhibition of adenosine triphosphatases of subcellular particles from the brain. J Neurochem. 1961 Dec;8:246–256. doi: 10.1111/j.1471-4159.1961.tb13550.x. [DOI] [PubMed] [Google Scholar]
  7. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickens F., Greville G. D. The metabolism of normal and tumour tissue: Neutral salt effects. Biochem J. 1935 Jun;29(6):1468–1483. doi: 10.1042/bj0291468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLIOTT K. A., PAPPIUS H. M. Factors affecting the potassium content of incubated brain slices. Can J Biochem Physiol. 1956 Sep;34(5):1053–1067. [PubMed] [Google Scholar]
  10. ELSHOVE A., VAN ROSSUMG NET MOVEMENTS OF SODIUM AND POTASSIUM, AND THEIR RELATION TO RESPIRATION, IN SLICES OF RAT LIVER INCUBATED IN VITRO. J Physiol. 1963 Oct;168:531–553. doi: 10.1113/jphysiol.1963.sp007206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GORE M. B. R., MCILWAIN H. Effects of some inorganic salts on the metabolic response of sections of mammalian cerebral cortex to electrical stimulation. J Physiol. 1952 Aug;117(4):471–483. doi: 10.1113/jphysiol.1952.sp004761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HANZON V., TOSCHI G. Electron microscopy of microsomal fractions from rat brain. Exp Cell Res. 1959 Feb;16(2):256–271. doi: 10.1016/0014-4827(59)90253-8. [DOI] [PubMed] [Google Scholar]
  13. HERTZ L., SCHOU M. Univalent cations and the respiration of brain-cortex slices. Biochem J. 1962 Oct;85:93–104. doi: 10.1042/bj0850093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HESS H. H. Effect of Na ions and K ions on Mg ion-stimulated adenosinetriphosphatase activity of brain. J Neurochem. 1962 Nov-Dec;9:613–621. doi: 10.1111/j.1471-4159.1962.tb04218.x. [DOI] [PubMed] [Google Scholar]
  15. HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
  17. KREBS H. A., HEMS R. Some reactions of adenosine and inosine phosphates in animal tissues. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):172–180. doi: 10.1016/0006-3002(53)90136-x. [DOI] [PubMed] [Google Scholar]
  18. LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
  19. MCILWAIN H. Phosphates of brain during in vitro metabolism: effects of oxygen, glucose, glutamate, glutamine, and calcium and potassium salts. Biochem J. 1952 Oct;52(2):289–295. doi: 10.1042/bj0520289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PETRUSHKA E., GIUDITTA A. Electron microscopy of two subcellular fractions isolated from cerebral cortex homogenate. J Biophys Biochem Cytol. 1959 Aug;6(1):129–132. doi: 10.1083/jcb.6.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  22. SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
  23. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  24. TERNER C., EGGLESTON L. V., KREBS H. A. The role of glutamic acid in the transport of potassium in brain and retina. Biochem J. 1950 Aug;47(2):139–149. doi: 10.1042/bj0470139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WHEELER K. P., WHITTAM R. Fome properties of a kidney adenosine triphosphatase relevant to active cation transport. Biochem J. 1962 Dec;85:495–507. doi: 10.1042/bj0850495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. WHITTAM R. Active cation transport as a pace-maker of respiration. Nature. 1961 Aug 5;191:603–604. doi: 10.1038/191603a0. [DOI] [PubMed] [Google Scholar]
  27. WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WHITTAM R. The dependence of the respiration of brain cortex on active cation transport. Biochem J. 1962 Jan;82:205–212. doi: 10.1042/bj0820205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES