Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2025 Sep 3:2025.06.05.658049. Originally published 2025 Jun 8. [Version 2] doi: 10.1101/2025.06.05.658049

Nociceptin/Orphanin FQ receptor agonism attenuates behavioral and neural responses to conditioned aversive stimuli

Kwang-Hyun Hur, Diego A Pizzagalli, Jessi Stover, Kenroy Cayetano, Stephen J Kohut
PMCID: PMC12157557  PMID: 40502109

Abstract

The nociceptin/orphanin FQ peptide (NOP) receptor has emerged as a promising anxiolytic target, as its activation has been shown to reduce anxiety-related behaviors in rodents. However, the mechanisms underlying these effects are not well understood. Here, we investigated the effects of the selective NOP receptor agonist SCH-221510 (SCH; 0.01-0.1 mg/kg, IM) on behavioral and neural responses to aversive stimuli in squirrel monkeys (n=3). Subjects underwent Pavlovian fear conditioning, wherein a visual conditioned stimulus (CS) was paired with the presentation of an aversive stimulus. Event-related fMRI was conducted in awake subjects to evaluate CS-evoked neural responses. Behavioral and neural responses to the CS were assessed across three experimental phases: pre-conditioning (Pre-C), post-conditioning (Post-C), and Post-C with SCH administration. In behavioral assessments, CS presentation during Post-C elicited a robust suppression of ongoing operant responding, which was absent during Pre-C and significantly attenuated by SCH treatment (0.1 mg/kg). Functional magnetic resonance imaging (fMRI) results revealed that, relative to Pre-C, CS presentation during Post-C was associated with increased BOLD activity in brain regions previously implicated in fear processing (e.g., amygdala), expression and regulation (e.g., prefrontal cortex; PFC), as well as sensory integration. Critically, SCH (0.1 mg/kg) administration significantly attenuated CS-induced neural activation in these regions. Furthermore, resting-state functional connectivity analysis revealed that SCH administration decreased connectivity between the PFC and the amygdala, while enhancing connectivity among subregions of the PFC. Collectively, these findings suggest that NOP receptor agonism may attenuate conditioned responses to aversive stimuli by modulating functional interactions within the PFC–amygdala circuit.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES