Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1955 Aug;60(4):683–692. doi: 10.1042/bj0600683

The fermentation of l-threonine, l-serine, l-cysteine and acrylic acid by a Gram-negative coccus

D Lewis 1,2, S R Elsden 1,2
PMCID: PMC1216171  PMID: 13249967

Full text

PDF
683

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANNISON E. F. Studies on the volatile fatty acids of sheep blood with special reference to formic acid. Biochem J. 1954 Dec;58(4):670–680. doi: 10.1042/bj0580670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conway E. J., O'malley E. Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10mug. N). Biochem J. 1942 Sep;36(7-9):655–661. doi: 10.1042/bj0360655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ELSDEN S. R., LEWIS D. The production of fatty acids by a gram-negative coccus. Biochem J. 1953 Aug;55(1):183–189. doi: 10.1042/bj0550183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gale E. F., Stephenson M. Factors influencing bacterial deamination: Factors influencing the activity of dl-serine deaminase in Bacterium coli. Biochem J. 1938 Feb;32(2):392–404. doi: 10.1042/bj0320392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harrison K. Metabolites of contracting muscle. Utilization of fumarate. Biochem J. 1939 Sep;33(9):1465–1469. doi: 10.1042/bj0331465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. JAMES A. T., MARTIN A. J. P. Gas-liquid partition chromatography; the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J. 1952 Mar;50(5):679–690. doi: 10.1042/bj0500679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JOHNS A. T. The mechanism of propionic acid formation by Clostridium propionicum. J Gen Microbiol. 1952 Feb;6(1-2):123–127. doi: 10.1099/00221287-6-1-2-123. [DOI] [PubMed] [Google Scholar]
  8. KALLIO R. E., PORTER J. R. The metabolism of cystine and cysteine by Proteus vulgaris and Proteus morganii. J Bacteriol. 1950 Nov;60(5):607–615. doi: 10.1128/jb.60.5.607-615.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LYNEN F. Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Fed Proc. 1953 Sep;12(3):683–691. [PubMed] [Google Scholar]
  10. MAHLER H. R. Role of coenzyme A in fatty acid metabolism. Fed Proc. 1953 Sep;12(3):694–702. [PubMed] [Google Scholar]
  11. PEEL J. L., BARKER H. A. The reduction of vinylacetate by clostridium kluyveri. Biochem J. 1953 Mar;53(4):xxix–xxix. [PubMed] [Google Scholar]
  12. STADTMAN E. R., BARKER H. A. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri; a consideration of postulated 4-carbon intermediates in butyrate synthesis. J Biol Chem. 1949 Nov;181(1):221–235. [PubMed] [Google Scholar]
  13. STADTMAN E. R. Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle: Discussion. Fed Proc. 1953 Sep;12(3):692–693. [PubMed] [Google Scholar]
  14. Tarr H. L. The anaerobic decomposition of l-cystine by washed cells of Proteus vulgaris. Biochem J. 1933;27(3):759–763. doi: 10.1042/bj0270759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WOOD W. A., GUNSALUS I. C. Serine and threonine desaminaes of Escherichia coli; activators for a cell-free enzyme. J Biol Chem. 1949 Nov;181(1):171–182. [PubMed] [Google Scholar]
  16. Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. Biochem J. 1937 Oct;31(10):1774–1788. doi: 10.1042/bj0311774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. YANOFSKY C., REISSIG J. L. L-Serine dehydrase of Neurospora. J Biol Chem. 1953 Jun;202(2):567–577. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES