Skip to main content
Genetics logoLink to Genetics
. 1987 Mar;115(3):521–533. doi: 10.1093/genetics/115.3.521

Regulatory and Structural Genes for Lysozymes of Mice

Michael F Hammer 1, Allan C Wilson 1
PMCID: PMC1216354  PMID: 3569879

Abstract

The molecular and genetic basis of large differences in the concentration of P lysozyme in the small intestine has been investigated by crossing inbred strains of two species of house mouse (genus Mus). The concentration of P in domesticus is about 130-fold higher than in castaneus . An autosomal genetic element determining the concentration of P has been identified and named the P lysozyme regulator, Lzp-r . The level of P in interspecific hybrids (domesticus x castaneus) as well as in certain classes of backcross progeny is intermediate relative to parental levels, which shows that the two alleles of Lzp-r are inherited additively. There are two forms of P lysozyme in the intestine of the interspecific hybrid—one having the heat stability of domesticus P, the other being more stable and presumably the product of the castaneus P locus. These two forms occur in equal amounts, and it appears that Lzp-r acts in trans. The linkage of Lzp-r to three structural genes (Lzp-s, Lzm-s1, and Lzm-s2), one specifying P lysozyme and two specifying M lysozymes, was shown by electrophoretic analysis of backcrosses involving domesticus and castaneus and also domesticus and spretus . The role of regulatory mutations in evolution is discussed in light of these results.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belayew A., Tilghman S. M. Genetic analysis of alpha-fetoprotein synthesis in mice. Mol Cell Biol. 1982 Nov;2(11):1427–1435. doi: 10.1128/mcb.2.11.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bläckberg L., Hernell O., Olivecrona T., Domellöf L., Malinov M. R. The bile salt-stimulated lipase in human milk is an evolutionary newcomer derived from a non-milk protein. FEBS Lett. 1980 Mar 24;112(1):51–54. doi: 10.1016/0014-5793(80)80125-6. [DOI] [PubMed] [Google Scholar]
  3. Bonhomme F., Catalan J., Britton-Davidian J., Chapman V. M., Moriwaki K., Nevo E., Thaler L. Biochemical diversity and evolution in the genus Mus. Biochem Genet. 1984 Apr;22(3-4):275–303. doi: 10.1007/BF00484229. [DOI] [PubMed] [Google Scholar]
  4. Felder M. R. Biochemical and developmental genetics of isozymes in the mouse, Mus musculus. Isozymes Curr Top Biol Med Res. 1980;4:1–68. [PubMed] [Google Scholar]
  5. Ferris S. D., Sage R. D., Prager E. M., Ritte U., Wilson A. C. Mitochondrial DNA evolution in mice. Genetics. 1983 Nov;105(3):681–721. doi: 10.1093/genetics/105.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flint J., Hill A. V., Bowden D. K., Oppenheimer S. J., Sill P. R., Serjeantson S. W., Bana-Koiri J., Bhatia K., Alpers M. P., Boyce A. J. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature. 1986 Jun 19;321(6072):744–750. doi: 10.1038/321744a0. [DOI] [PubMed] [Google Scholar]
  7. Herrup K., Mullen R. J. Biochemical and genetic factors in the heat inactivation of murine beta-glucuronidase. Biochem Genet. 1977 Aug;15(7-8):641–653. doi: 10.1007/BF00484095. [DOI] [PubMed] [Google Scholar]
  8. Hutton J. J. Genetic regulation of glucose 6-phosphate dehydrogenase activity in the inbred mouse. Biochem Genet. 1971 Aug;5(4):315–331. doi: 10.1007/BF00485859. [DOI] [PubMed] [Google Scholar]
  9. James P. S., Smith M. W., Butcher G. W., Brown D., Lund E. K. Evidence for a possible regulatory gene (Suc-1) controlling sucrase expression in mouse intestine. Biochem Genet. 1986 Apr;24(3-4):169–181. doi: 10.1007/BF00502786. [DOI] [PubMed] [Google Scholar]
  10. Kovesdi I., Reichel R., Nevins J. R. Identification of a cellular transcription factor involved in E1A trans-activation. Cell. 1986 Apr 25;45(2):219–228. doi: 10.1016/0092-8674(86)90386-7. [DOI] [PubMed] [Google Scholar]
  11. Kozak L. P. Genetic control of -glycerolphosphate dehydrogenase in mouse brain. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3170–3174. doi: 10.1073/pnas.69.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lusis A. J., Chapman V. M., Wangenstein R. W., Paigen K. Trans-acting temporal locus within the beta-glucuronidase gene complex. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4398–4402. doi: 10.1073/pnas.80.14.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lusis A. J., Paigen K. Genetic determination of the alpha-galactosidase developmental program in mice. Cell. 1975 Nov;6(3):371–378. doi: 10.1016/0092-8674(75)90186-5. [DOI] [PubMed] [Google Scholar]
  14. Martin S. A., Taylor B. A., Watanabe T., Bulfield G. Histidine decarboxylase phenotypes of inbred mouse strains: a regulatory locus (Hdc) determines kidney enzyme concentration. Biochem Genet. 1984 Apr;22(3-4):305–322. doi: 10.1007/BF00484230. [DOI] [PubMed] [Google Scholar]
  15. Meredith S. A., Ganschow R. E. Apparent trans control of murine beta-glucuronidase synthesis by a temporal genetic element. Genetics. 1978 Dec;90(4):725–734. doi: 10.1093/genetics/90.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olsson M., Lindahl G., Ruoslahti E. Genetic control of alpha-fetoprotein synthesis in the mouse. J Exp Med. 1977 Apr 1;145(4):819–827. doi: 10.1084/jem.145.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pittenger M. F., Cleveland D. W. Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression. J Cell Biol. 1985 Nov;101(5 Pt 1):1941–1952. doi: 10.1083/jcb.101.5.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Potter J., Ho M. W., Bolton H., Furth A. J., Swallow D. M., Griffiths B. Human lactase and the molecular basis of lactase persistence. Biochem Genet. 1985 Jun;23(5-6):423–439. doi: 10.1007/BF00499084. [DOI] [PubMed] [Google Scholar]
  19. Rio D., Robbins A., Myers R., Tjian R. Regulation of simian virus 40 early transcription in vitro by a purified tumor antigen. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5706–5710. doi: 10.1073/pnas.77.10.5706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]
  21. Wilson C. M., Cherry M., Taylor B. A., Wilson J. D. Genetic and endocrine control of renin activity in the submaxillary gland of the mouse. Biochem Genet. 1981 Jun;19(5-6):509–523. doi: 10.1007/BF00484623. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES