Abstract
The molecular and genetic basis of large differences in the concentration of P lysozyme in the small intestine has been investigated by crossing inbred strains of two species of house mouse (genus Mus). The concentration of P in domesticus is about 130-fold higher than in castaneus . An autosomal genetic element determining the concentration of P has been identified and named the P lysozyme regulator, Lzp-r . The level of P in interspecific hybrids (domesticus x castaneus) as well as in certain classes of backcross progeny is intermediate relative to parental levels, which shows that the two alleles of Lzp-r are inherited additively. There are two forms of P lysozyme in the intestine of the interspecific hybrid—one having the heat stability of domesticus P, the other being more stable and presumably the product of the castaneus P locus. These two forms occur in equal amounts, and it appears that Lzp-r acts in trans. The linkage of Lzp-r to three structural genes (Lzp-s, Lzm-s1, and Lzm-s2), one specifying P lysozyme and two specifying M lysozymes, was shown by electrophoretic analysis of backcrosses involving domesticus and castaneus and also domesticus and spretus . The role of regulatory mutations in evolution is discussed in light of these results.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belayew A., Tilghman S. M. Genetic analysis of alpha-fetoprotein synthesis in mice. Mol Cell Biol. 1982 Nov;2(11):1427–1435. doi: 10.1128/mcb.2.11.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bläckberg L., Hernell O., Olivecrona T., Domellöf L., Malinov M. R. The bile salt-stimulated lipase in human milk is an evolutionary newcomer derived from a non-milk protein. FEBS Lett. 1980 Mar 24;112(1):51–54. doi: 10.1016/0014-5793(80)80125-6. [DOI] [PubMed] [Google Scholar]
- Bonhomme F., Catalan J., Britton-Davidian J., Chapman V. M., Moriwaki K., Nevo E., Thaler L. Biochemical diversity and evolution in the genus Mus. Biochem Genet. 1984 Apr;22(3-4):275–303. doi: 10.1007/BF00484229. [DOI] [PubMed] [Google Scholar]
- Felder M. R. Biochemical and developmental genetics of isozymes in the mouse, Mus musculus. Isozymes Curr Top Biol Med Res. 1980;4:1–68. [PubMed] [Google Scholar]
- Ferris S. D., Sage R. D., Prager E. M., Ritte U., Wilson A. C. Mitochondrial DNA evolution in mice. Genetics. 1983 Nov;105(3):681–721. doi: 10.1093/genetics/105.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flint J., Hill A. V., Bowden D. K., Oppenheimer S. J., Sill P. R., Serjeantson S. W., Bana-Koiri J., Bhatia K., Alpers M. P., Boyce A. J. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature. 1986 Jun 19;321(6072):744–750. doi: 10.1038/321744a0. [DOI] [PubMed] [Google Scholar]
- Herrup K., Mullen R. J. Biochemical and genetic factors in the heat inactivation of murine beta-glucuronidase. Biochem Genet. 1977 Aug;15(7-8):641–653. doi: 10.1007/BF00484095. [DOI] [PubMed] [Google Scholar]
- Hutton J. J. Genetic regulation of glucose 6-phosphate dehydrogenase activity in the inbred mouse. Biochem Genet. 1971 Aug;5(4):315–331. doi: 10.1007/BF00485859. [DOI] [PubMed] [Google Scholar]
- James P. S., Smith M. W., Butcher G. W., Brown D., Lund E. K. Evidence for a possible regulatory gene (Suc-1) controlling sucrase expression in mouse intestine. Biochem Genet. 1986 Apr;24(3-4):169–181. doi: 10.1007/BF00502786. [DOI] [PubMed] [Google Scholar]
- Kovesdi I., Reichel R., Nevins J. R. Identification of a cellular transcription factor involved in E1A trans-activation. Cell. 1986 Apr 25;45(2):219–228. doi: 10.1016/0092-8674(86)90386-7. [DOI] [PubMed] [Google Scholar]
- Kozak L. P. Genetic control of -glycerolphosphate dehydrogenase in mouse brain. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3170–3174. doi: 10.1073/pnas.69.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lusis A. J., Chapman V. M., Wangenstein R. W., Paigen K. Trans-acting temporal locus within the beta-glucuronidase gene complex. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4398–4402. doi: 10.1073/pnas.80.14.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lusis A. J., Paigen K. Genetic determination of the alpha-galactosidase developmental program in mice. Cell. 1975 Nov;6(3):371–378. doi: 10.1016/0092-8674(75)90186-5. [DOI] [PubMed] [Google Scholar]
- Martin S. A., Taylor B. A., Watanabe T., Bulfield G. Histidine decarboxylase phenotypes of inbred mouse strains: a regulatory locus (Hdc) determines kidney enzyme concentration. Biochem Genet. 1984 Apr;22(3-4):305–322. doi: 10.1007/BF00484230. [DOI] [PubMed] [Google Scholar]
- Meredith S. A., Ganschow R. E. Apparent trans control of murine beta-glucuronidase synthesis by a temporal genetic element. Genetics. 1978 Dec;90(4):725–734. doi: 10.1093/genetics/90.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsson M., Lindahl G., Ruoslahti E. Genetic control of alpha-fetoprotein synthesis in the mouse. J Exp Med. 1977 Apr 1;145(4):819–827. doi: 10.1084/jem.145.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pittenger M. F., Cleveland D. W. Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression. J Cell Biol. 1985 Nov;101(5 Pt 1):1941–1952. doi: 10.1083/jcb.101.5.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter J., Ho M. W., Bolton H., Furth A. J., Swallow D. M., Griffiths B. Human lactase and the molecular basis of lactase persistence. Biochem Genet. 1985 Jun;23(5-6):423–439. doi: 10.1007/BF00499084. [DOI] [PubMed] [Google Scholar]
- Rio D., Robbins A., Myers R., Tjian R. Regulation of simian virus 40 early transcription in vitro by a purified tumor antigen. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5706–5710. doi: 10.1073/pnas.77.10.5706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]
- Wilson C. M., Cherry M., Taylor B. A., Wilson J. D. Genetic and endocrine control of renin activity in the submaxillary gland of the mouse. Biochem Genet. 1981 Jun;19(5-6):509–523. doi: 10.1007/BF00484623. [DOI] [PubMed] [Google Scholar]