Skip to main content
Genetics logoLink to Genetics
. 1987 Mar;115(3):535–543. doi: 10.1093/genetics/115.3.535

The Genes for Mouse Salivary Androgen-Binding Protein (Abp) Subunits Alpha and Gamma Are Located on Chromosome 7

Stephen R Dlouhy 1,2,3, Benjamin A Taylor 1,2,3, Robert C Karn 1,2,3
PMCID: PMC1216355  PMID: 3569880

Abstract

We demonstrate that the previously described gene Androgen binding protein (Abp; Dlouhy and Karn, 1984) codes for the Alpha subunit of ABP and rename the locus Androgen binding protein alpha (Abpa). A study of recombinant inbred strains demonstrates that Abpa is located on chromosome 7 near Glucose phosphate isomerase-1 (Gpi-1). Biochemical and genetic evidence indicates the existence of another ABP subunit, Gamma, and its locus, Androgen binding protein gamma (Abpg), that is closely linked to Abpa. Although no polymorphism has yet been found for the previously described Beta subunit of ABP (Dlouhy and Karn, 1983; 1984), we suggest that it represents a third locus, Androgen binding protein beta (Abpb). ABP subunits appear to dimerize randomly and a model is presented demonstrating the origin of six ABP dimers in the salivas of AbpaaAbpga/AbpabAbpgb heterozygous mice. The results of cell-free translation studies in which the pre-ABP subunits are identified specifically by immunoprecipitation with anti-ABP antibody supports the idea that independent mRNAs code for the Alpha, Beta and Gamma subunits.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. DeLorenzo R. J., Ruddle F. H. Genetic control of two electrophoretic variants of glucosephosphate isomerase in the mouse (Mus musculus). Biochem Genet. 1969 Apr;3(2):151–162. doi: 10.1007/BF00520350. [DOI] [PubMed] [Google Scholar]
  4. Dlouhy S. R., Karn R. C. Multiple gene action determining a mouse salivary protein phenotype: identification of the structural gene for androgen binding protein (Abp). Biochem Genet. 1984 Aug;22(7-8):657–667. doi: 10.1007/BF00485851. [DOI] [PubMed] [Google Scholar]
  5. Dlouhy S. R., Karn R. C. The tissue source and cellular control of the apparent size of androgen binding protein (Abp), a mouse salivary protein whose electrophoretic mobility is under the control of sex-limited saliva pattern (Ssp). Biochem Genet. 1983 Dec;21(11-12):1057–1070. doi: 10.1007/BF00488459. [DOI] [PubMed] [Google Scholar]
  6. Heyns W., De Moor P. Prostatic binding protein. A steriod-binding protein secreted by rat prostate. Eur J Biochem. 1977 Aug 15;78(1):221–230. doi: 10.1111/j.1432-1033.1977.tb11733.x. [DOI] [PubMed] [Google Scholar]
  7. Jenkins N. A., Copeland N. G., Taylor B. A., Lee B. K. Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature. 1981 Oct 1;293(5831):370–374. doi: 10.1038/293370a0. [DOI] [PubMed] [Google Scholar]
  8. Nabeshima Y., Fujii-Kuriyama Y., Muramatsu M., Ogata K. Alternative transcription and two modes of splicing results in two myosin light chains from one gene. Nature. 1984 Mar 22;308(5957):333–338. doi: 10.1038/308333a0. [DOI] [PubMed] [Google Scholar]
  9. Parker M. G., White R., Hurst H., Needham M., Tilly R. Prostatic steroid-binding protein. Isolation and characterization of C3 genes. J Biol Chem. 1983 Jan 10;258(1):12–15. [PubMed] [Google Scholar]
  10. Wood A. W., Taylor B. A. Genetic regulation of coumarin hydroxylase activity in mice. Evidence for single locus control on chromosome. J Biol Chem. 1979 Jul 10;254(13):5647–5651. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES