Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):119–124. doi: 10.1042/bj3130119

The mitogen-activated protein kinase pathway in rat islets of Langerhans: studies on the regulation of insulin secretion.

S J Persaud 1, C P Wheeler-Jones 1, P M Jones 1
PMCID: PMC1216871  PMID: 8546672

Abstract

The expression of mitogen-activated protein kinases (MAPKs) and MAPK kinases (MEKs) in rat islets of Langerhans and the involvement of MAPKs in regulated insulin secretion were examined. Two major isoforms of both MEK (45 and 46 kDa) and MAPK (42 and 44 kDa) were detected in rat islets and shown to be localized to insulin-secreting beta cells by detection of their expression in the beta cell line MIN6. The tyrosine phosphatase inhibitor sodium pervanadate, and, to a lesser extent, the serine/threonine phosphatase inhibitor okadaic acid, stimulated MAPK phosphorylation, as assessed by a shift in its electrophoretic mobility and by increased phosphotyrosine immunoreactivity of immunoprecipitated MAPK. The increase in MAPK phosphorylation stimulated by sodium pervanadate was not coupled to an increase in MAPK activity, but okadaic acid, either alone or in the presence of sodium pervanadate, caused an increase in myelin basic protein phosphorylation by MAPK. Neither okadaic acid nor sodium pervanadate, either individually or combined, stimulated insulin secretion. 4 beta-phorbol myristate acetate stimulated an increase in phosphorylation of the 42 kDa isoform of MAPK (erk2) in human umbilical vein endothelial cells, but neither it nor glucose affected either the phosphorylation state of islet erk2 or the activities of immunoprecipitated islet MAPKs. These results provide evidence for the presence of a regulated MAPK pathway in adult rat islets, but our data suggest that MAPK activation alone is not a sufficient stimulus for insulin secretion.

Full Text

The Full Text of this article is available as a PDF (326.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ely C. M., Oddie K. M., Litz J. S., Rossomando A. J., Kanner S. B., Sturgill T. W., Parsons S. J. A 42-kD tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42-kD mitogen-stimulated protein in fibroblasts. J Cell Biol. 1990 Mar;110(3):731–742. doi: 10.1083/jcb.110.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Huwiler A., Pfeilschifter J. Stimulation by extracellular ATP and UTP of the mitogen-activated protein kinase cascade and proliferation of rat renal mesangial cells. Br J Pharmacol. 1994 Dec;113(4):1455–1463. doi: 10.1111/j.1476-5381.1994.tb17160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jones P. M., Mann F. M., Persaud S. J., Wheeler-Jones C. P. Mastoparan stimulates insulin secretion from pancreatic beta-cells by effects at a late stage in the secretory pathway. Mol Cell Endocrinol. 1993 Jul;94(1):97–103. doi: 10.1016/0303-7207(93)90056-p. [DOI] [PubMed] [Google Scholar]
  5. Jones P. M., Persaud S. J. Arachidonic acid as a second messenger in glucose-induced insulin secretion from pancreatic beta-cells. J Endocrinol. 1993 Apr;137(1):7–14. doi: 10.1677/joe.0.1370007. [DOI] [PubMed] [Google Scholar]
  6. Jones P. M., Salmon D. M., Howell S. L. Protein phosphorylation in electrically permeabilized islets of Langerhans. Effects of Ca2+, cyclic AMP, a phorbol ester and noradrenaline. Biochem J. 1988 Sep 1;254(2):397–403. doi: 10.1042/bj2540397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kribben A., Wieder E. D., Li X., van Putten V., Granot Y., Schrier R. W., Nemenoff R. A. AVP-induced activation of MAP kinase in vascular smooth muscle cells is mediated through protein kinase C. Am J Physiol. 1993 Oct;265(4 Pt 1):C939–C945. doi: 10.1152/ajpcell.1993.265.4.C939. [DOI] [PubMed] [Google Scholar]
  8. Lisbona C., Alemany S., Calvo V., Fernandez-Renart M. Raf-1 and ERK2 kinases are required for phorbol 12,13-dibutyrate-stimulated proliferation of rat lymphoblasts. ERK2 activation precedes Raf-1 hyperphosphorylation. Eur J Immunol. 1994 Nov;24(11):2746–2754. doi: 10.1002/eji.1830241126. [DOI] [PubMed] [Google Scholar]
  9. Marquardt B., Frith D., Stabel S. Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathway in vitro. Oncogene. 1994 Nov;9(11):3213–3218. [PubMed] [Google Scholar]
  10. Marshall C. J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 1994 Feb;4(1):82–89. doi: 10.1016/0959-437x(94)90095-7. [DOI] [PubMed] [Google Scholar]
  11. Mitchell R., Sim P. J., Leslie T., Johnson M. S., Thomson F. J. Activation of MAP kinase associated with the priming effect of LHRH. J Endocrinol. 1994 Feb;140(2):R15–R18. doi: 10.1677/joe.0.140r015. [DOI] [PubMed] [Google Scholar]
  12. Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990 Jul;127(1):126–132. doi: 10.1210/endo-127-1-126. [DOI] [PubMed] [Google Scholar]
  13. Mordret G. MAP kinase kinase: a node connecting multiple pathways. Biol Cell. 1993;79(3):193–207. doi: 10.1016/0248-4900(93)90138-5. [DOI] [PubMed] [Google Scholar]
  14. Nakashima S., Chatani Y., Nakamura M., Miyoshi N., Kohno M., Nozawa Y. Tyrosine phosphorylation and activation of mitogen-activated protein kinases by thrombin in human platelets: possible involvement in late arachidonic acid release. Biochem Biophys Res Commun. 1994 Jan 28;198(2):497–503. doi: 10.1006/bbrc.1994.1073. [DOI] [PubMed] [Google Scholar]
  15. Ohmichi M., Sawada T., Kanda Y., Koike K., Hirota K., Miyake A., Saltiel A. R. Thyrotropin-releasing hormone stimulates MAP kinase activity in GH3 cells by divergent pathways. Evidence of a role for early tyrosine phosphorylation. J Biol Chem. 1994 Feb 4;269(5):3783–3788. [PubMed] [Google Scholar]
  16. Papkoff J., Chen R. H., Blenis J., Forsman J. p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol. 1994 Jan;14(1):463–472. doi: 10.1128/mcb.14.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Persaud S. J., Wheeler-Jones C. P., Jones P. M. The mitogen-activated protein kinase cascade in rat islets of Langerhans. Biochem Soc Trans. 1995 May;23(2):221S–221S. doi: 10.1042/bst023221s. [DOI] [PubMed] [Google Scholar]
  18. Posada J., Cooper J. A. Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science. 1992 Jan 10;255(5041):212–215. doi: 10.1126/science.1313186. [DOI] [PubMed] [Google Scholar]
  19. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  20. Santini F., Beaven M. A. Tyrosine phosphorylation of a mitogen-activated protein kinase-like protein occurs at a late step in exocytosis. Studies with tyrosine phosphatase inhibitors and various secretagogues in rat RBL-2H3 cells. J Biol Chem. 1993 Oct 25;268(30):22716–22722. [PubMed] [Google Scholar]
  21. Sarcevic B., Erikson E., Maller J. L. Purification and characterization of a mitogen-activated protein kinase tyrosine phosphatase from Xenopus eggs. J Biol Chem. 1993 Nov 25;268(33):25075–25083. [PubMed] [Google Scholar]
  22. Sun H., Charles C. H., Lau L. F., Tonks N. K. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell. 1993 Nov 5;75(3):487–493. doi: 10.1016/0092-8674(93)90383-2. [DOI] [PubMed] [Google Scholar]
  23. Ward Y., Gupta S., Jensen P., Wartmann M., Davis R. J., Kelly K. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature. 1994 Feb 17;367(6464):651–654. doi: 10.1038/367651a0. [DOI] [PubMed] [Google Scholar]
  24. Wu J., Lau L. F., Sturgill T. W. Rapid deactivation of MAP kinase in PC12 cells occurs independently of induction of phosphatase MKP-1. FEBS Lett. 1994 Oct 10;353(1):9–12. doi: 10.1016/0014-5793(94)01000-5. [DOI] [PubMed] [Google Scholar]
  25. Young S. W., Dickens M., Tavaré J. M. Differentiation of PC12 cells in response to a cAMP analogue is accompanied by sustained activation of mitogen-activated protein kinase. Comparison with the effects of insulin, growth factors and phorbol esters. FEBS Lett. 1994 Jan 31;338(2):212–216. doi: 10.1016/0014-5793(94)80367-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES