Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):133–140. doi: 10.1042/bj3130133

Glucose transport and GLUT4 protein distribution in skeletal muscle of GLUT4 transgenic mice.

J T Brozinick Jr 1, B B Yaspelkis 3rd 1, C M Wilson 1, K E Grant 1, E M Gibbs 1, S W Cushman 1, J L Ivy 1
PMCID: PMC1216873  PMID: 8546674

Abstract

The aim of the present investigation was to determine whether the subcellular distribution and insulin-stimulated translocation of the GLUT4 isoform of the glucose transporter are affected when GLUT4 is overexpressed in mouse skeletal muscle, and if the overexpression of GLUT4 alters maximal insulin-stimulated glucose transport and metabolism. Rates of glucose transport and metabolism were assessed by hind-limb perfusion in GLUT4 transgenic (TG) mice and non-transgenic (NTG) controls. Glucose-transport activity was determined under basal (no insulin), submaximal (0.2 m-unit/ml) and maximal (10 m-units/ml) insulin conditions using a perfusate containing 8 mM 3-O-methyl-D-glucose. Glucose metabolism was quantified by perfusing the hind limbs for 25 min with a perfusate containing 8 mM glucose and 10 m-units/ml insulin. Under basal conditions, there was no difference in muscle glucose transport between TG (1.10 +/- 0.10 mumol/h per g; mean +/- S.E.M.) and NTG (0.93 +/- 0.16 mumol/h per g) mice. However, TG mice displayed significantly greater glucose-transport activity during submaximal (4.42 +/- 0.49 compared with 2.69 +/- 0.33 mumol/h per g) and maximal (11.68 +/- 1.13 compared with 7.53 +/- 0.80 mumol/h per g) insulin stimulation. Nevertheless, overexpression of the GLUT4 protein did not alter maximal rates of glucose metabolism. Membrane purification revealed that, under basal conditions, plasma-membrane (approximately 12-fold) and intracellular-membrane (approximately 4-fold) GLUT4 protein concentrations were greater in TG than NTG mice. Submaximal insulin stimulation did not increase plasma-membrane GLUT4 protein concentration whereas maximal insulin stimulation increased this protein in both NTG (4.1-fold) and TG (2.6-fold) mice. These results suggest that the increase in insulin-stimulated glucose transport following overexpression of the GLUT4 protein is limited by factors other than the plasma-membrane GLUT4 protein concentration. Furthermore, GLUT4 overexpression is not coupled to glucose-metabolic capacity.

Full Text

The Full Text of this article is available as a PDF (325.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
  2. Banks E. A., Brozinick J. T., Jr, Yaspelkis B. B., 3rd, Kang H. Y., Ivy J. L. Muscle glucose transport, GLUT-4 content, and degree of exercise training in obese Zucker rats. Am J Physiol. 1992 Nov;263(5 Pt 1):E1010–E1015. doi: 10.1152/ajpendo.1992.263.5.E1015. [DOI] [PubMed] [Google Scholar]
  3. Bers D. M., Philipson K. D., Nishimoto A. Y. Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1980 Sep 18;601(2):358–371. doi: 10.1016/0005-2736(80)90540-4. [DOI] [PubMed] [Google Scholar]
  4. Brozinick J. T., Jr, Etgen G. J., Jr, Yaspelkis B. B., 3rd, Ivy J. L. Glucose uptake and GLUT-4 protein distribution in skeletal muscle of the obese Zucker rat. Am J Physiol. 1994 Jul;267(1 Pt 2):R236–R243. doi: 10.1152/ajpregu.1994.267.1.R236. [DOI] [PubMed] [Google Scholar]
  5. Brozinick J. T., Jr, Etgen G. J., Jr, Yaspelkis B. B., 3rd, Kang H. Y., Ivy J. L. Effects of exercise training on muscle GLUT-4 protein content and translocation in obese Zucker rats. Am J Physiol. 1993 Sep;265(3 Pt 1):E419–E427. doi: 10.1152/ajpendo.1993.265.3.E419. [DOI] [PubMed] [Google Scholar]
  6. Deems R. O., Deacon R. W., Ramlal T., Volchuk A., Klip A., Young D. A. Insulin action on whole body glucose utilization and on muscle glucose transporter translocation in mice. Biochem Biophys Res Commun. 1994 Mar 15;199(2):662–670. doi: 10.1006/bbrc.1994.1279. [DOI] [PubMed] [Google Scholar]
  7. Douen A. G., Ramlal T., Cartee G. D., Klip A. Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle. FEBS Lett. 1990 Feb 26;261(2):256–260. doi: 10.1016/0014-5793(90)80566-2. [DOI] [PubMed] [Google Scholar]
  8. Douen A. G., Ramlal T., Rastogi S., Bilan P. J., Cartee G. D., Vranic M., Holloszy J. O., Klip A. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem. 1990 Aug 15;265(23):13427–13430. [PubMed] [Google Scholar]
  9. Etgen G. J., Jr, Brozinick J. T., Jr, Kang H. Y., Ivy J. L. Effects of exercise training on skeletal muscle glucose uptake and transport. Am J Physiol. 1993 Mar;264(3 Pt 1):C727–C733. doi: 10.1152/ajpcell.1993.264.3.C727. [DOI] [PubMed] [Google Scholar]
  10. Goodyear L. J., Hirshman M. F., Horton E. S. Exercise-induced translocation of skeletal muscle glucose transporters. Am J Physiol. 1991 Dec;261(6 Pt 1):E795–E799. doi: 10.1152/ajpendo.1991.261.6.E795. [DOI] [PubMed] [Google Scholar]
  11. Haney P. M., Slot J. W., Piper R. C., James D. E., Mueckler M. Intracellular targeting of the insulin-regulatable glucose transporter (GLUT4) is isoform specific and independent of cell type. J Cell Biol. 1991 Aug;114(4):689–699. doi: 10.1083/jcb.114.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hansen P. A., Gulve E. A., Marshall B. A., Gao J., Pessin J. E., Holloszy J. O., Mueckler M. Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J Biol Chem. 1995 Jan 27;270(4):1679–1684. doi: 10.1074/jbc.270.5.1679. [DOI] [PubMed] [Google Scholar]
  13. Henriksen E. J., Bourey R. E., Rodnick K. J., Koranyi L., Permutt M. A., Holloszy J. O. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J Physiol. 1990 Oct;259(4 Pt 1):E593–E598. doi: 10.1152/ajpendo.1990.259.4.E593. [DOI] [PubMed] [Google Scholar]
  14. Hirshman M. F., Goodyear L. J., Wardzala L. J., Horton E. D., Horton E. S. Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. J Biol Chem. 1990 Jan 15;265(2):987–991. [PubMed] [Google Scholar]
  15. Kern M., Wells J. A., Stephens J. M., Elton C. W., Friedman J. E., Tapscott E. B., Pekala P. H., Dohm G. L. Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level. Biochem J. 1990 Sep 1;270(2):397–400. doi: 10.1042/bj2700397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. King P. A., Horton E. D., Hirshman M. F., Horton E. S. Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. J Clin Invest. 1992 Oct;90(4):1568–1575. doi: 10.1172/JCI116025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kubo K., Foley J. E. Rate-limiting steps for insulin-mediated glucose uptake into perfused rat hindlimb. Am J Physiol. 1986 Jan;250(1 Pt 1):E100–E102. doi: 10.1152/ajpendo.1986.250.1.E100. [DOI] [PubMed] [Google Scholar]
  18. Liu M. L., Gibbs E. M., McCoid S. C., Milici A. J., Stukenbrok H. A., McPherson R. K., Treadway J. L., Pessin J. E. Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11346–11350. doi: 10.1073/pnas.90.23.11346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lo S., Russell J. C., Taylor A. W. Determination of glycogen in small tissue samples. J Appl Physiol. 1970 Feb;28(2):234–236. doi: 10.1152/jappl.1970.28.2.234. [DOI] [PubMed] [Google Scholar]
  20. Olson A. L., Liu M. L., Moye-Rowley W. S., Buse J. B., Bell G. I., Pessin J. E. Hormonal/metabolic regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem. 1993 May 5;268(13):9839–9846. [PubMed] [Google Scholar]
  21. Rodnick K. J., Slot J. W., Studelska D. R., Hanpeter D. E., Robinson L. J., Geuze H. J., James D. E. Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J Biol Chem. 1992 Mar 25;267(9):6278–6285. [PubMed] [Google Scholar]
  22. Ruderman N. B., Houghton C. R., Hems R. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J. 1971 Sep;124(3):639–651. doi: 10.1042/bj1240639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shepherd P. R., Gnudi L., Tozzo E., Yang H., Leach F., Kahn B. B. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem. 1993 Oct 25;268(30):22243–22246. [PubMed] [Google Scholar]
  24. Treadway J. L., Hargrove D. M., Nardone N. A., McPherson R. K., Russo J. F., Milici A. J., Stukenbrok H. A., Gibbs E. M., Stevenson R. W., Pessin J. E. Enhanced peripheral glucose utilization in transgenic mice expressing the human GLUT4 gene. J Biol Chem. 1994 Nov 25;269(47):29956–29961. [PubMed] [Google Scholar]
  25. Vannucci S. J., Nishimura H., Satoh S., Cushman S. W., Holman G. D., Simpson I. A. Cell surface accessibility of GLUT4 glucose transporters in insulin-stimulated rat adipose cells. Modulation by isoprenaline and adenosine. Biochem J. 1992 Nov 15;288(Pt 1):325–330. doi: 10.1042/bj2880325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES