Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):163–169. doi: 10.1042/bj3130163

1,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat-liver nuclei by promoting the redox activity of endogenous copper ions.

M J Burkitt 1, L Milne 1, P Nicotera 1, S Orrenius 1
PMCID: PMC1216877  PMID: 8546678

Abstract

Isolated rat-liver nuclei were incubated with a series of membrane-permeable metal-ion-complexing agents and examined for DNA damage. Of the reagents tested, only 1,10-phenanthroline (OP) and neocuproine (NC) were found to induce DNA fragmentation. Agarose-gel electrophoresis of the DNA fragments generated in the presence of OP revealed internucleosomal cleavage, which is widely considered to be a hallmark for the enzymic DNA digestion that occurs during apoptosis. Ascorbate, particularly in the presence of hydrogen peroxide, increased the levels of fragmentation induced by OP. As well as undergoing fragmentation, the DNA from nuclei was also found to contain 8-hydroxydeoxyguanosine, which indicates attack (oxidation) by the hydroxyl radical. Complementary experiments in vitro involving ESR determinations of hydroxyl radical formation and measurements of DNA oxidation under biomimetic conditions demonstrated that Cu2+, but not Fe3+, forms a complex with either OP or NC (but not the other complexing agents tested) that stimulates hydroxyl radical formation and DNA damage in the presence of hydrogen peroxide and ascorbate. It is therefore proposed that OP in the nuclei incubations binds to Cu2+, which exists naturally in chromosomes, forming a complex that promotes hydroxyl-radical-dependent DNA fragmentation. These findings demonstrate the promotion of hydroxyl-radical-mediated DNA damage by endogenous Cu2+ and, perhaps more significantly, demonstrate that the internucleosomal DNA 'laddering' that is often used as an indicator of apoptosis may also result from DNA fragmentation by non-enzymic processes.

Full Text

The Full Text of this article is available as a PDF (485.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abello P. A., Fidler S. A., Bulkley G. B., Buchman T. G. Antioxidants modulate induction of programmed endothelial cell death (apoptosis) by endotoxin. Arch Surg. 1994 Feb;129(2):134–141. doi: 10.1001/archsurg.1994.01420260030003. [DOI] [PubMed] [Google Scholar]
  2. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  3. Burkitt M. J. Copper--DNA adducts. Methods Enzymol. 1994;234:66–79. doi: 10.1016/0076-6879(94)34078-1. [DOI] [PubMed] [Google Scholar]
  4. Burkitt M. J., Milne L., Tsang S. Y., Tam S. C. Calcium indicator dye Quin2 inhibits hydrogen peroxide-induced DNA strand break formation via chelation of iron. Arch Biochem Biophys. 1994 Jun;311(2):321–328. doi: 10.1006/abbi.1994.1244. [DOI] [PubMed] [Google Scholar]
  5. Buttke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunol Today. 1994 Jan;15(1):7–10. doi: 10.1016/0167-5699(94)90018-3. [DOI] [PubMed] [Google Scholar]
  6. Cartwright I. L., Elgin S. C. Analysis of chromatin structure and DNA sequence organization: use of the 1,10-phenanthroline-cuprous complex. Nucleic Acids Res. 1982 Oct 11;10(19):5835–5852. doi: 10.1093/nar/10.19.5835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dypbukt J. M., Ankarcrona M., Burkitt M., Sjöholm A., Ström K., Orrenius S., Nicotera P. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem. 1994 Dec 2;269(48):30553–30560. [PubMed] [Google Scholar]
  8. Fukuchi K., Tomoyasu S., Tsuruoka N., Gomi K. Iron deprivation-induced apoptosis in HL-60 cells. FEBS Lett. 1994 Aug 15;350(1):139–142. doi: 10.1016/0014-5793(94)00755-1. [DOI] [PubMed] [Google Scholar]
  9. George A. M., Sabovljev S. A., Hart L. E., Cramp W. A., Harris G., Hornsey S. DNA quaternary structure in the radiation sensitivity of human lymphocytes--a proposed role of copper. Br J Cancer Suppl. 1987 Jun;8:141–144. [PMC free article] [PubMed] [Google Scholar]
  10. Greenspan H. C., Aruoma O. I., Arouma O. Could oxidative stress initiate programmed cell death in HIV infection? A role for plant derived metabolites having synergistic antioxidant activity. Chem Biol Interact. 1994 Jun;91(2-3):187–197. doi: 10.1016/0009-2797(94)90039-6. [DOI] [PubMed] [Google Scholar]
  11. Halliwell B., Aruoma O. I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991 Apr 9;281(1-2):9–19. doi: 10.1016/0014-5793(91)80347-6. [DOI] [PubMed] [Google Scholar]
  12. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  13. Jones D. P., McConkey D. J., Nicotera P., Orrenius S. Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem. 1989 Apr 15;264(11):6398–6403. [PubMed] [Google Scholar]
  14. Kane D. J., Sarafian T. A., Anton R., Hahn H., Gralla E. B., Valentine J. S., Ord T., Bredesen D. E. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993 Nov 19;262(5137):1274–1277. doi: 10.1126/science.8235659. [DOI] [PubMed] [Google Scholar]
  15. Lewis C. D., Laemmli U. K. Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell. 1982 May;29(1):171–181. doi: 10.1016/0092-8674(82)90101-5. [DOI] [PubMed] [Google Scholar]
  16. Lewis C. D., Lebkowski J. S., Daly A. K., Laemmli U. K. Interphase nuclear matrix and metaphase scaffolding structures. J Cell Sci Suppl. 1984;1:103–122. doi: 10.1242/jcs.1984.supplement_1.8. [DOI] [PubMed] [Google Scholar]
  17. Mason R. P. Assay of in situ radicals by electron spin resonance. Methods Enzymol. 1984;105:416–422. doi: 10.1016/s0076-6879(84)05058-8. [DOI] [PubMed] [Google Scholar]
  18. McCabe M. J., Jr, Jiang S. A., Orrenius S. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab Invest. 1993 Jul;69(1):101–110. [PubMed] [Google Scholar]
  19. McConkey D. J., Hartzell P., Nicotera P., Wyllie A. H., Orrenius S. Stimulation of endogenous endonuclease activity in hepatocytes exposed to oxidative stress. Toxicol Lett. 1988 Aug;42(2):123–130. doi: 10.1016/0378-4274(88)90069-0. [DOI] [PubMed] [Google Scholar]
  20. Milne L., Nicotera P., Orrenius S., Burkitt M. J. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch Biochem Biophys. 1993 Jul;304(1):102–109. doi: 10.1006/abbi.1993.1327. [DOI] [PubMed] [Google Scholar]
  21. Orrenius S., Burkitt M. J., Kass G. E., Dypbukt J. M., Nicotera P. Calcium ions and oxidative cell injury. Ann Neurol. 1992;32 (Suppl):S33–S42. doi: 10.1002/ana.410320708. [DOI] [PubMed] [Google Scholar]
  22. Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rothstein J. D., Bristol L. A., Hosler B., Brown R. H., Jr, Kuncl R. W. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4155–4159. doi: 10.1073/pnas.91.10.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sandstrom P. A., Mannie M. D., Buttke T. M. Inhibition of activation-induced death in T cell hybridomas by thiol antioxidants: oxidative stress as a mediator of apoptosis. J Leukoc Biol. 1994 Feb;55(2):221–226. doi: 10.1002/jlb.55.2.221. [DOI] [PubMed] [Google Scholar]
  25. Sandström B. E., Granström M., Marklund S. L. New roles for quin2: powerful transition-metal ion chelator that inhibits copper-, but potentiates iron-driven, Fenton-type reactions. Free Radic Biol Med. 1994 Feb;16(2):177–185. doi: 10.1016/0891-5849(94)90141-4. [DOI] [PubMed] [Google Scholar]
  26. Sarafian T. A., Bredesen D. E. Is apoptosis mediated by reactive oxygen species? Free Radic Res. 1994 Jul;21(1):1–8. doi: 10.3109/10715769409056549. [DOI] [PubMed] [Google Scholar]
  27. Shiokawa D., Ohyama H., Yamada T., Takahashi K., Tanuma S. Identification of an endonuclease responsible for apoptosis in rat thymocytes. Eur J Biochem. 1994 Nov 15;226(1):23–30. doi: 10.1111/j.1432-1033.1994.tb20022.x. [DOI] [PubMed] [Google Scholar]
  28. Sigman D. S., Graham D. R., D'Aurora V., Stern A. M. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J Biol Chem. 1979 Dec 25;254(24):12269–12272. [PubMed] [Google Scholar]
  29. Tanuma S., Shiokawa D. Multiple forms of nuclear deoxyribonuclease in rat thymocytes. Biochem Biophys Res Commun. 1994 Sep 15;203(2):789–797. doi: 10.1006/bbrc.1994.2252. [DOI] [PubMed] [Google Scholar]
  30. Thomas D. J., Caffrey T. C. Lipopolysaccharide induces double-stranded DNA fragmentation in mouse thymus: protective effect of zinc pretreatment. Toxicology. 1991;68(3):327–337. doi: 10.1016/0300-483x(91)90078-f. [DOI] [PubMed] [Google Scholar]
  31. Treves S., Trentini P. L., Ascanelli M., Bucci G., Di Virgilio F. Apoptosis is dependent on intracellular zinc and independent of intracellular calcium in lymphocytes. Exp Cell Res. 1994 Apr;211(2):339–343. doi: 10.1006/excr.1994.1096. [DOI] [PubMed] [Google Scholar]
  32. Wolfe J. T., Ross D., Cohen G. M. A role for metals and free radicals in the induction of apoptosis in thymocytes. FEBS Lett. 1994 Sep 19;352(1):58–62. doi: 10.1016/0014-5793(94)00920-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES