Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):17–29. doi: 10.1042/bj3130017

Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer.

H Wiseman 1, B Halliwell 1
PMCID: PMC1216878  PMID: 8546679

Full Text

The Full Text of this article is available as a PDF (313.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi S., Kawamura K., Takemoto K. Increased susceptibility to oxidative DNA damage in regenerating liver. Carcinogenesis. 1994 Mar;15(3):539–543. doi: 10.1093/carcin/15.3.539. [DOI] [PubMed] [Google Scholar]
  2. Adachi S., Zeisig M., Möller L. Improvements in the analytical method for 8-hydroxydeoxyguanosine in nuclear DNA. Carcinogenesis. 1995 Feb;16(2):253–258. doi: 10.1093/carcin/16.2.253. [DOI] [PubMed] [Google Scholar]
  3. Agarwal S., Sohal R. S. DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12332–12335. doi: 10.1073/pnas.91.25.12332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ahnfelt-Rønne I., Nielsen O. H., Christensen A., Langholz E., Binder V., Riis P. Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology. 1990 May;98(5 Pt 1):1162–1169. doi: 10.1016/0016-5085(90)90329-y. [DOI] [PubMed] [Google Scholar]
  5. Ahnfelt-Rønne I., Nielsen O. H. The antiinflammatory moiety of sulfasalazine, 5-aminosalicylic acid, is a radical scavenger. Agents Actions. 1987 Jun;21(1-2):191–194. doi: 10.1007/BF01974941. [DOI] [PubMed] [Google Scholar]
  6. Ambrosio G., Zweier J. L., Duilio C., Kuppusamy P., Santoro G., Elia P. P., Tritto I., Cirillo P., Condorelli M., Chiariello M. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem. 1993 Sep 5;268(25):18532–18541. [PubMed] [Google Scholar]
  7. Ames B. N. Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun. 1989;7(3-6):121–128. doi: 10.3109/10715768909087933. [DOI] [PubMed] [Google Scholar]
  8. Arnheim N., Cortopassi G. Deleterious mitochondrial DNA mutations accumulate in aging human tissues. Mutat Res. 1992 Sep;275(3-6):157–167. doi: 10.1016/0921-8734(92)90020-p. [DOI] [PubMed] [Google Scholar]
  9. Aruoma O. I., Wasil M., Halliwell B., Hoey B. M., Butler J. The scavenging of oxidants by sulphasalazine and its metabolites. A possible contribution to their anti-inflammatory effects? Biochem Pharmacol. 1987 Nov 1;36(21):3739–3742. doi: 10.1016/0006-2952(87)90028-1. [DOI] [PubMed] [Google Scholar]
  10. Bashir S., Harris G., Denman M. A., Blake D. R., Winyard P. G. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis. 1993 Sep;52(9):659–666. doi: 10.1136/ard.52.9.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Basu A. K., Loechler E. L., Leadon S. A., Essigmann J. M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7677–7681. doi: 10.1073/pnas.86.20.7677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Beckman J. S., Chen J., Ischiropoulos H., Crow J. P. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–240. doi: 10.1016/s0076-6879(94)33026-3. [DOI] [PubMed] [Google Scholar]
  13. Benamira M., Johnson K., Chaudhary A., Bruner K., Tibbetts C., Marnett L. J. Induction of mutations by replication of malondialdehyde-modified M13 DNA in Escherichia coli: determination of the extent of DNA modification, genetic requirements for mutagenesis, and types of mutations induced. Carcinogenesis. 1995 Jan;16(1):93–99. doi: 10.1093/carcin/16.1.93. [DOI] [PubMed] [Google Scholar]
  14. Berger S. J., Gosky D., Zborowska E., Willson J. K., Berger N. A. Sensitive enzymatic cycling assay for glutathione: measurements of glutathione content and its modulation by buthionine sulfoximine in vivo and in vitro in human colon cancer. Cancer Res. 1994 Aug 1;54(15):4077–4083. [PubMed] [Google Scholar]
  15. Bertram J. S. Inhibition of chemically induced neoplastic transformation by carotenoids. Mechanistic studies. Ann N Y Acad Sci. 1993 May 28;686:161–176. doi: 10.1111/j.1749-6632.1993.tb39170.x. [DOI] [PubMed] [Google Scholar]
  16. Block G., Patterson B., Subar A. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer. 1992;18(1):1–29. doi: 10.1080/01635589209514201. [DOI] [PubMed] [Google Scholar]
  17. Block G. The data support a role for antioxidants in reducing cancer risk. Nutr Rev. 1992 Jul;50(7):207–213. doi: 10.1111/j.1753-4887.1992.tb01329.x. [DOI] [PubMed] [Google Scholar]
  18. Blount B. C., Ames B. N. Analysis of uracil in DNA by gas chromatography-mass spectrometry. Anal Biochem. 1994 Jun;219(2):195–200. doi: 10.1006/abio.1994.1257. [DOI] [PubMed] [Google Scholar]
  19. Blumberg B. S., Larouzé B., London W. T., Werner B., Hesser J. E., Millman I., Saimot G., Payet M. The relation of infection with the hepatitis B agent to primary hepatic carcinoma. Am J Pathol. 1975 Dec;81(3):669–682. [PMC free article] [PubMed] [Google Scholar]
  20. Bolann B. J., Ulvik R. J. On the limited ability of superoxide to release iron from ferritin. Eur J Biochem. 1990 Nov 13;193(3):899–904. doi: 10.1111/j.1432-1033.1990.tb19415.x. [DOI] [PubMed] [Google Scholar]
  21. Boughton-Smith N. K., Evans S. M., Hawkey C. J., Cole A. T., Balsitis M., Whittle B. J., Moncada S. Nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Lancet. 1993 Aug 7;342(8867):338–340. doi: 10.1016/0140-6736(93)91476-3. [DOI] [PubMed] [Google Scholar]
  22. Boughton-Smith N. K. Pathological and therapeutic implications for nitric oxide in inflammatory bowel disease. J R Soc Med. 1994 Jun;87(6):312–314. doi: 10.1177/014107689408700602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Box H. C., Freund H. G., Budzinski E. E., Wallace J. C., Maccubbin A. E. Free radical-induced double base lesions. Radiat Res. 1995 Jan;141(1):91–94. [PubMed] [Google Scholar]
  24. Brash D. E., Rudolph J. A., Simon J. A., Lin A., McKenna G. J., Baden H. P., Halperin A. J., Pontén J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10124–10128. doi: 10.1073/pnas.88.22.10124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bressac B., Kew M., Wands J., Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 1991 Apr 4;350(6317):429–431. doi: 10.1038/350429a0. [DOI] [PubMed] [Google Scholar]
  26. Brown T. A., Brown K. A. Ancient DNA: using molecular biology to explore the past. Bioessays. 1994 Oct;16(10):719–726. doi: 10.1002/bies.950161006. [DOI] [PubMed] [Google Scholar]
  27. Burdon R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995 Apr;18(4):775–794. doi: 10.1016/0891-5849(94)00198-s. [DOI] [PubMed] [Google Scholar]
  28. Buttke T. M., Sandstrom P. A. Redox regulation of programmed cell death in lymphocytes. Free Radic Res. 1995 May;22(5):389–397. doi: 10.3109/10715769509147548. [DOI] [PubMed] [Google Scholar]
  29. Byers T., Perry G. Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Annu Rev Nutr. 1992;12:139–159. doi: 10.1146/annurev.nu.12.070192.001035. [DOI] [PubMed] [Google Scholar]
  30. Candeias L. P., Patel K. B., Stratford M. R., Wardman P. Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett. 1993 Oct 25;333(1-2):151–153. doi: 10.1016/0014-5793(93)80394-a. [DOI] [PubMed] [Google Scholar]
  31. Carmichael P. L., Shé M. N., Phillips D. H. Detection and characterization by 32P-postlabelling of DNA adducts induced by a Fenton-type oxygen radical-generating system. Carcinogenesis. 1992 Jul;13(7):1127–1135. doi: 10.1093/carcin/13.7.1127. [DOI] [PubMed] [Google Scholar]
  32. Cerutti P. A. Oxy-radicals and cancer. Lancet. 1994 Sep 24;344(8926):862–863. doi: 10.1016/s0140-6736(94)92832-0. [DOI] [PubMed] [Google Scholar]
  33. Chaudhary A. K., Nokubo M., Marnett L. J., Blair I. A. Analysis of the malondialdehyde-2'-deoxyguanosine adduct in rat liver DNA by gas chromatography/electron capture negative chemical ionization mass spectrometry. Biol Mass Spectrom. 1994 Aug;23(8):457–464. doi: 10.1002/bms.1200230802. [DOI] [PubMed] [Google Scholar]
  34. Church S. L., Grant J. W., Ridnour L. A., Oberley L. W., Swanson P. E., Meltzer P. S., Trent J. M. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3113–3117. doi: 10.1073/pnas.90.7.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Claycamp H. G. Phenol sensitization of DNA to subsequent oxidative damage in 8-hydroxyguanine assays. Carcinogenesis. 1992 Jul;13(7):1289–1292. doi: 10.1093/carcin/13.7.1289. [DOI] [PubMed] [Google Scholar]
  36. Collins A. R., Duthie S. J., Dobson V. L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis. 1993 Sep;14(9):1733–1735. doi: 10.1093/carcin/14.9.1733. [DOI] [PubMed] [Google Scholar]
  37. Corral-Debrinski M., Shoffner J. M., Lott M. T., Wallace D. C. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res. 1992 Sep;275(3-6):169–180. doi: 10.1016/0921-8734(92)90021-g. [DOI] [PubMed] [Google Scholar]
  38. Craven P. A., Pfanstiel J., DeRubertis F. R. Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J Clin Invest. 1986 Mar;77(3):850–859. doi: 10.1172/JCI112382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411. [DOI] [PubMed] [Google Scholar]
  40. Diplock A. T. Antioxidants and disease prevention. Mol Aspects Med. 1994;15(4):293–376. doi: 10.1016/0098-2997(94)90005-1. [DOI] [PubMed] [Google Scholar]
  41. Dizdaroglu M., Laval J., Boiteux S. Substrate specificity of the Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry. 1993 Nov 16;32(45):12105–12111. doi: 10.1021/bi00096a022. [DOI] [PubMed] [Google Scholar]
  42. Dizdaroglu M., Olinski R., Doroshow J. H., Akman S. A. Modification of DNA bases in chromatin of intact target human cells by activated human polymorphonuclear leukocytes. Cancer Res. 1993 Mar 15;53(6):1269–1272. [PubMed] [Google Scholar]
  43. Dizdaroglu M. Quantitative determination of oxidative base damage in DNA by stable isotope-dilution mass spectrometry. FEBS Lett. 1993 Jan 2;315(1):1–6. doi: 10.1016/0014-5793(93)81120-o. [DOI] [PubMed] [Google Scholar]
  44. Dizdaroglu M., Rao G., Halliwell B., Gajewski E. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch Biochem Biophys. 1991 Mar;285(2):317–324. doi: 10.1016/0003-9861(91)90366-q. [DOI] [PubMed] [Google Scholar]
  45. Dong H., Buard A., Renier A., Lévy F., Saint-Etienne L., Jaurand M. C. Role of oxygen derivatives in the cytotoxicity and DNA damage produced by asbestos on rat pleural mesothelial cells in vitro. Carcinogenesis. 1994 Jun;15(6):1251–1255. doi: 10.1093/carcin/15.6.1251. [DOI] [PubMed] [Google Scholar]
  46. Dyke G. W., Craven J. L., Hall R., Garner R. C. Effect of vitamin C supplementation on gastric mucosal DNA damage. Carcinogenesis. 1994 Feb;15(2):291–295. doi: 10.1093/carcin/15.2.291. [DOI] [PubMed] [Google Scholar]
  47. Eiserich J. P., Vossen V., O'Neill C. A., Halliwell B., Cross C. E., van der Vliet A. Molecular mechanisms of damage by excess nitrogen oxides: nitration of tyrosine by gas-phase cigarette smoke. FEBS Lett. 1994 Oct 10;353(1):53–56. doi: 10.1016/0014-5793(94)01011-0. [DOI] [PubMed] [Google Scholar]
  48. Esterbauer H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr. 1993 May;57(5 Suppl):779S–786S. doi: 10.1093/ajcn/57.5.779S. [DOI] [PubMed] [Google Scholar]
  49. Evans J., Maccabee M., Hatahet Z., Courcelle J., Bockrath R., Ide H., Wallace S. Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis. Mutat Res. 1993 May;299(3-4):147–156. doi: 10.1016/0165-1218(93)90092-r. [DOI] [PubMed] [Google Scholar]
  50. Feig D. I., Loeb L. A. Mechanisms of mutation by oxidative DNA damage: reduced fidelity of mammalian DNA polymerase beta. Biochemistry. 1993 Apr 27;32(16):4466–4473. doi: 10.1021/bi00067a040. [DOI] [PubMed] [Google Scholar]
  51. Feig D. I., Reid T. M., Loeb L. A. Reactive oxygen species in tumorigenesis. Cancer Res. 1994 Apr 1;54(7 Suppl):1890s–1894s. [PubMed] [Google Scholar]
  52. Flint D. H., Smyk-Randall E., Tuminello J. F., Draczynska-Lusiak B., Brown O. R. The inactivation of dihydroxy-acid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs because of the destruction of its Fe-S cluster, but the enzyme remains in the cell in a form that can be reactivated. J Biol Chem. 1993 Dec 5;268(34):25547–25552. [PubMed] [Google Scholar]
  53. Floyd R. A., Watson J. J., Wong P. K., Altmiller D. H., Rickard R. C. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun. 1986;1(3):163–172. doi: 10.3109/10715768609083148. [DOI] [PubMed] [Google Scholar]
  54. Fraga C. G., Motchnik P. A., Shigenaga M. K., Helbock H. J., Jacob R. A., Ames B. N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11003–11006. doi: 10.1073/pnas.88.24.11003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther. 1992;53(1):127–166. doi: 10.1016/0163-7258(92)90047-4. [DOI] [PubMed] [Google Scholar]
  56. Frenkel K., Karkoszka J., Cohen B., Barański B., Jakubowski M., Cosma G., Taioli E., Toniolo P. Occupational exposures to Cd, Ni, and Cr modulate titers of antioxidized DNA base autoantibodies. Environ Health Perspect. 1994 Sep;102 (Suppl 3):221–225. doi: 10.1289/ehp.94102s3221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Geierstanger B. H., Kagawa T. F., Chen S. L., Quigley G. J., Ho P. S. Base-specific binding of copper(II) to Z-DNA. The 1.3-A single crystal structure of d(m5CGUAm5CG) in the presence of CuCl2. J Biol Chem. 1991 Oct 25;266(30):20185–20191. doi: 10.2210/pdb1d40/pdb. [DOI] [PubMed] [Google Scholar]
  58. Goldring C. E., Rice-Evans C. A., Burdon R. H., Rao R., Haq I., Diplock A. T. alpha-Tocopherol uptake and its influence on cell proliferation and lipid peroxidation in transformed and nontransformed baby hamster kidney cells. Arch Biochem Biophys. 1993 Jun;303(2):429–435. doi: 10.1006/abbi.1993.1305. [DOI] [PubMed] [Google Scholar]
  59. Graf E., Eaton J. W. Suppression of colonic cancer by dietary phytic acid. Nutr Cancer. 1993;19(1):11–19. doi: 10.1080/01635589309514232. [DOI] [PubMed] [Google Scholar]
  60. Grisham M. B. Effect of 5-aminosalicylic acid on ferrous sulfate-mediated damage to deoxyribose. Biochem Pharmacol. 1990 Jun 15;39(12):2060–2063. doi: 10.1016/0006-2952(90)90630-4. [DOI] [PubMed] [Google Scholar]
  61. Grisham M. B. Oxidants and free radicals in inflammatory bowel disease. Lancet. 1994 Sep 24;344(8926):859–861. doi: 10.1016/s0140-6736(94)92831-2. [DOI] [PubMed] [Google Scholar]
  62. Grisham M. B., Ware K., Gilleland H. E., Jr, Gilleland L. B., Abell C. L., Yamada T. Neutrophil-mediated nitrosamine formation: role of nitric oxide in rats. Gastroenterology. 1992 Oct;103(4):1260–1266. doi: 10.1016/0016-5085(92)91513-4. [DOI] [PubMed] [Google Scholar]
  63. Guidot D. M., McCord J. M., Wright R. M., Repine J. E. Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J Biol Chem. 1993 Dec 15;268(35):26699–26703. [PubMed] [Google Scholar]
  64. Gutteridge J. M. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986 Jun 9;201(2):291–295. doi: 10.1016/0014-5793(86)80626-3. [DOI] [PubMed] [Google Scholar]
  65. Hagen T. M., Huang S., Curnutte J., Fowler P., Martinez V., Wehr C. M., Ames B. N., Chisari F. V. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12808–12812. doi: 10.1073/pnas.91.26.12808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Haldar S., Negrini M., Monne M., Sabbioni S., Croce C. M. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res. 1994 Apr 15;54(8):2095–2097. [PubMed] [Google Scholar]
  67. Halliwell B., Aruoma O. I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991 Apr 9;281(1-2):9–19. doi: 10.1016/0014-5793(91)80347-6. [DOI] [PubMed] [Google Scholar]
  68. Halliwell B., Dizdaroglu M. The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radic Res Commun. 1992;16(2):75–87. doi: 10.3109/10715769209049161. [DOI] [PubMed] [Google Scholar]
  69. Halliwell B. Drug antioxidant effects. A basis for drug selection? Drugs. 1991 Oct;42(4):569–605. doi: 10.2165/00003495-199142040-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev. 1994 Aug;52(8 Pt 1):253–265. doi: 10.1111/j.1753-4887.1994.tb01453.x. [DOI] [PubMed] [Google Scholar]
  71. Halliwell B., Gutteridge J. M. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990 Jul;280(1):1–8. doi: 10.1016/0003-9861(90)90510-6. [DOI] [PubMed] [Google Scholar]
  72. Halliwell B. How to characterize a biological antioxidant. Free Radic Res Commun. 1990;9(1):1–32. doi: 10.3109/10715769009148569. [DOI] [PubMed] [Google Scholar]
  73. Halliwell B. Oxygen radicals, nitric oxide and human inflammatory joint disease. Ann Rheum Dis. 1995 Jun;54(6):505–510. doi: 10.1136/ard.54.6.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Hamberg M., Zhang L. Y. Quantitative determination of 8-hydroxyguanine and guanine by isotope dilution mass spectrometry. Anal Biochem. 1995 Aug 10;229(2):336–344. doi: 10.1006/abio.1995.1422. [DOI] [PubMed] [Google Scholar]
  75. Harman D. Free radical theory of aging. Mutat Res. 1992 Sep;275(3-6):257–266. doi: 10.1016/0921-8734(92)90030-s. [DOI] [PubMed] [Google Scholar]
  76. Harris G., Bashir S., Winyard P. G. 7,8-Dihydro-8-oxo-2'-deoxyguanosine present in DNA is not simply an artefact of isolation. Carcinogenesis. 1994 Feb;15(2):411–413. doi: 10.1093/carcin/15.2.411. [DOI] [PubMed] [Google Scholar]
  77. Hatahet Z., Kow Y. W., Purmal A. A., Cunningham R. P., Wallace S. S. New substrates for old enzymes. 5-Hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2'-deoxyuridine is a substrate for uracil DNA N-glycosylase. J Biol Chem. 1994 Jul 22;269(29):18814–18820. [PubMed] [Google Scholar]
  78. Hattori-Nakakuki Y., Nishigori C., Okamoto K., Imamura S., Hiai H., Toyokuni S. Formation of 8-hydroxy-2'-deoxyguanosine in epidermis of hairless mice exposed to near-UV. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1132–1139. doi: 10.1006/bbrc.1994.1823. [DOI] [PubMed] [Google Scholar]
  79. Heller B., Wang Z. Q., Wagner E. F., Radons J., Bürkle A., Fehsel K., Burkart V., Kolb H. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem. 1995 May 12;270(19):11176–11180. doi: 10.1074/jbc.270.19.11176. [DOI] [PubMed] [Google Scholar]
  80. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  81. Hopman A. H., Moesker O., Smeets A. W., Pauwels R. P., Vooijs G. P., Ramaekers F. C. Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res. 1991 Jan 15;51(2):644–651. [PubMed] [Google Scholar]
  82. Hruszkewycz A. M. Lipid peroxidation and mtDNA degeneration. A hypothesis. Mutat Res. 1992 Sep;275(3-6):243–248. doi: 10.1016/0921-8734(92)90028-n. [DOI] [PubMed] [Google Scholar]
  83. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  84. Hunter D. J., Manson J. E., Colditz G. A., Stampfer M. J., Rosner B., Hennekens C. H., Speizer F. E., Willett W. C. A prospective study of the intake of vitamins C, E, and A and the risk of breast cancer. N Engl J Med. 1993 Jul 22;329(4):234–240. doi: 10.1056/NEJM199307223290403. [DOI] [PubMed] [Google Scholar]
  85. Hussain S. P., Aguilar F., Amstad P., Cerutti P. Oxy-radical induced mutagenesis of hotspot codons 248 and 249 of the human p53 gene. Oncogene. 1994 Aug;9(8):2277–2281. [PubMed] [Google Scholar]
  86. Häring M., Rüdiger H., Demple B., Boiteux S., Epe B. Recognition of oxidized abasic sites by repair endonucleases. Nucleic Acids Res. 1994 Jun 11;22(11):2010–2015. doi: 10.1093/nar/22.11.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Jackson J. H. Potential molecular mechanisms of oxidant-induced carcinogenesis. Environ Health Perspect. 1994 Dec;102 (Suppl 10):155–157. doi: 10.1289/ehp.94102s10155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Jacobson M. D., Raff M. C. Programmed cell death and Bcl-2 protection in very low oxygen. Nature. 1995 Apr 27;374(6525):814–816. doi: 10.1038/374814a0. [DOI] [PubMed] [Google Scholar]
  89. Jaiyesimi I. A., Buzdar A. U., Hortobagyi G. Inflammatory breast cancer: a review. J Clin Oncol. 1992 Jun;10(6):1014–1024. doi: 10.1200/JCO.1992.10.6.1014. [DOI] [PubMed] [Google Scholar]
  90. Jaruga P., Zastawny T. H., Skokowski J., Dizdaroglu M., Olinski R. Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Lett. 1994 Mar 14;341(1):59–64. doi: 10.1016/0014-5793(94)80240-8. [DOI] [PubMed] [Google Scholar]
  91. Kamiya H., Ueda T., Ohgi T., Matsukage A., Kasai H. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res. 1995 Mar 11;23(5):761–766. doi: 10.1093/nar/23.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Kasprzak K. S., Diwan B. A., Rice J. M., Misra M., Riggs C. W., Olinski R., Dizdaroglu M. Nickel(II)-mediated oxidative DNA base damage in renal and hepatic chromatin of pregnant rats and their fetuses. Possible relevance to carcinogenesis. Chem Res Toxicol. 1992 Nov-Dec;5(6):809–815. doi: 10.1021/tx00030a013. [DOI] [PubMed] [Google Scholar]
  93. Kaur H., Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 1994 Aug 15;350(1):9–12. doi: 10.1016/0014-5793(94)00722-5. [DOI] [PubMed] [Google Scholar]
  94. Kiyosawa H., Suko M., Okudaira H., Murata K., Miyamoto T., Chung M. H., Kasai H., Nishimura S. Cigarette smoking induces formation of 8-hydroxydeoxyguanosine, one of the oxidative DNA damages in human peripheral leukocytes. Free Radic Res Commun. 1990;11(1-3):23–27. doi: 10.3109/10715769009109664. [DOI] [PubMed] [Google Scholar]
  95. Krinsky N. I. Micronutrients and their influence on mutagenicity and malignant transformation. Ann N Y Acad Sci. 1993 May 28;686:229–242. doi: 10.1111/j.1749-6632.1993.tb39180.x. [DOI] [PubMed] [Google Scholar]
  96. Kunkel T. A. Nucleotide repeats. Slippery DNA and diseases. Nature. 1993 Sep 16;365(6443):207–208. doi: 10.1038/365207a0. [DOI] [PubMed] [Google Scholar]
  97. Leaf C. D., Wishnok J. S., Tannenbaum S. R. Endogenous incorporation of nitric oxide from L-arginine into N-nitrosomorpholine stimulated by Escherichia coli lipopolysaccharide in the rat. Carcinogenesis. 1991 Mar;12(3):537–539. doi: 10.1093/carcin/12.3.537. [DOI] [PubMed] [Google Scholar]
  98. Li Y., Trush M. A. Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Cancer Res. 1994 Apr 1;54(7 Suppl):1895s–1898s. [PubMed] [Google Scholar]
  99. Li Y., Trush M. A., Yager J. D. DNA damage caused by reactive oxygen species originating from a copper-dependent oxidation of the 2-hydroxy catechol of estradiol. Carcinogenesis. 1994 Jul;15(7):1421–1427. doi: 10.1093/carcin/15.7.1421. [DOI] [PubMed] [Google Scholar]
  100. Licht W. R., Tannenbaum S. R., Deen W. M. Use of ascorbic acid to inhibit nitrosation: kinetic and mass transfer considerations for an in vitro system. Carcinogenesis. 1988 Mar;9(3):365–372. doi: 10.1093/carcin/9.3.365. [DOI] [PubMed] [Google Scholar]
  101. Lim J. S., Frenkel K., Troll W. Tamoxifen suppresses tumor promoter-induced hydrogen peroxide formation by human neutrophils. Cancer Res. 1992 Sep 15;52(18):4969–4972. [PubMed] [Google Scholar]
  102. Loft S., Astrup A., Buemann B., Poulsen H. E. Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 1994 May;8(8):534–537. doi: 10.1096/fasebj.8.8.8181672. [DOI] [PubMed] [Google Scholar]
  103. Loft S., Vistisen K., Ewertz M., Tjønneland A., Overvad K., Poulsen H. E. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis. 1992 Dec;13(12):2241–2247. doi: 10.1093/carcin/13.12.2241. [DOI] [PubMed] [Google Scholar]
  104. Lunec J., Herbert K., Blount S., Griffiths H. R., Emery P. 8-Hydroxydeoxyguanosine. A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett. 1994 Jul 11;348(2):131–138. doi: 10.1016/0014-5793(94)00583-4. [DOI] [PubMed] [Google Scholar]
  105. Maccabee M., Evans J. S., Glackin M. P., Hatahet Z., Wallace S. S. Pyrimidine ring fragmentation products. Effects of lesion structure and sequence context on mutagenesis. J Mol Biol. 1994 Feb 18;236(2):514–530. doi: 10.1006/jmbi.1994.1162. [DOI] [PubMed] [Google Scholar]
  106. Madzak C., Sarasin A. Mutation spectrum following transfection of ultraviolet-irradiated single-stranded or double-stranded shuttle vector DNA into monkey cells. J Mol Biol. 1991 Apr 20;218(4):667–673. doi: 10.1016/0022-2836(91)90252-2. [DOI] [PubMed] [Google Scholar]
  107. Malins D. C., Haimanot R. Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res. 1991 Oct 1;51(19):5430–5432. [PubMed] [Google Scholar]
  108. Malins D. C., Holmes E. H., Polissar N. L., Gunselman S. J. The etiology of breast cancer. Characteristic alteration in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk. Cancer. 1993 May 15;71(10):3036–3043. doi: 10.1002/1097-0142(19930515)71:10<3036::aid-cncr2820711025>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  109. Markowitz M. M., Rozen P., Pero R. W., Tobi M., Miller D. G. Hydrogen peroxide induced adenosine diphosphate ribosyl transferase (ADPRT) response in patients with inflammatory bowel disease. Gut. 1988 Dec;29(12):1680–1686. doi: 10.1136/gut.29.12.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Marletta M. A. Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem Res Toxicol. 1988 Sep-Oct;1(5):249–257. doi: 10.1021/tx00005a001. [DOI] [PubMed] [Google Scholar]
  111. Marnett L. J., Burcham P. C. Endogenous DNA adducts: potential and paradox. Chem Res Toxicol. 1993 Nov-Dec;6(6):771–785. doi: 10.1021/tx00036a005. [DOI] [PubMed] [Google Scholar]
  112. Marnett L. J., Ji C. Modulation of oxidant formation in mouse skin in vivo by tumor-promoting phorbol esters. Cancer Res. 1994 Apr 1;54(7 Suppl):1886s–1889s. [PubMed] [Google Scholar]
  113. Marx J. DNA repair comes into its own. Science. 1994 Nov 4;266(5186):728–730. doi: 10.1126/science.7973626. [DOI] [PubMed] [Google Scholar]
  114. Mecocci P., MacGarvey U., Beal M. F. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann Neurol. 1994 Nov;36(5):747–751. doi: 10.1002/ana.410360510. [DOI] [PubMed] [Google Scholar]
  115. Merry P., Winyard P. G., Morris C. J., Grootveld M., Blake D. R. Oxygen free radicals, inflammation, and synovitis: and synovitis: the current status. Ann Rheum Dis. 1989 Oct;48(10):864–870. doi: 10.1136/ard.48.10.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Mirvish S. S. Experimental evidence for inhibition of N-nitroso compound formation as a factor in the negative correlation between vitamin C consumption and the incidence of certain cancers. Cancer Res. 1994 Apr 1;54(7 Suppl):1948s–1951s. [PubMed] [Google Scholar]
  117. Mo J. Y., Maki H., Sekiguchi M. Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: sanitization of nucleotide pool. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11021–11025. doi: 10.1073/pnas.89.22.11021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Musarrat J., Wani A. A. Quantitative immunoanalysis of promutagenic 8-hydroxy-2'-deoxyguanosine in oxidized DNA. Carcinogenesis. 1994 Sep;15(9):2037–2043. doi: 10.1093/carcin/15.9.2037. [DOI] [PubMed] [Google Scholar]
  119. Nackerdien Z., Olinski R., Dizdaroglu M. DNA base damage in chromatin of gamma-irradiated cultured human cells. Free Radic Res Commun. 1992;16(4):259–273. doi: 10.3109/10715769209049179. [DOI] [PubMed] [Google Scholar]
  120. Nakayama T. Suppression of hydroperoxide-induced cytotoxicity by polyphenols. Cancer Res. 1994 Apr 1;54(7 Suppl):1991s–1993s. [PubMed] [Google Scholar]
  121. Nascimento A. L., Meneghini R. Cells transfected with transferrin receptor cDNA lacking the iron regulatory domain become more sensitive to the DNA-damaging action of oxidative stress. Carcinogenesis. 1995 Jun;16(6):1335–1338. doi: 10.1093/carcin/16.6.1335. [DOI] [PubMed] [Google Scholar]
  122. Nelson R. L., Davis F. G., Sutter E., Sobin L. H., Kikendall J. W., Bowen P. Body iron stores and risk of colonic neoplasia. J Natl Cancer Inst. 1994 Mar 16;86(6):455–460. doi: 10.1093/jnci/86.6.455. [DOI] [PubMed] [Google Scholar]
  123. Nicotera T. M., Privalle C., Wang T. C., Oshimura M., Barrett J. C. Differential proliferative responses of Syrian hamster embryo fibroblasts to paraquat-generated superoxide radicals depending on tumor suppressor gene function. Cancer Res. 1994 Jul 15;54(14):3884–3888. [PubMed] [Google Scholar]
  124. Oberley L. W., Buettner G. R. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141–1149. [PubMed] [Google Scholar]
  125. Ohshima H., Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994 Mar 1;305(2):253–264. doi: 10.1016/0027-5107(94)90245-3. [DOI] [PubMed] [Google Scholar]
  126. Olinski R., Zastawny T. H., Foksinski M., Barecki A., Dizdaroglu M. DNA base modifications and antioxidant enzyme activities in human benign prostatic hyperplasia. Free Radic Biol Med. 1995 Apr;18(4):807–813. doi: 10.1016/0891-5849(94)00171-f. [DOI] [PubMed] [Google Scholar]
  127. Olinski R., Zastawny T., Budzbon J., Skokowski J., Zegarski W., Dizdaroglu M. DNA base modifications in chromatin of human cancerous tissues. FEBS Lett. 1992 Sep 7;309(2):193–198. doi: 10.1016/0014-5793(92)81093-2. [DOI] [PubMed] [Google Scholar]
  128. Padmaja S., Huie R. E. The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun. 1993 Sep 15;195(2):539–544. doi: 10.1006/bbrc.1993.2079. [DOI] [PubMed] [Google Scholar]
  129. Palozza P., Krinsky N. I. beta-Carotene and alpha-tocopherol are synergistic antioxidants. Arch Biochem Biophys. 1992 Aug 15;297(1):184–187. doi: 10.1016/0003-9861(92)90658-j. [DOI] [PubMed] [Google Scholar]
  130. Parshad R., Price F. M., Oshimura M., Barrett J. C., Satoh H., Weissman B. E., Stanbridge E. J., Sanford K. K. Complementation of a DNA repair deficiency in six human tumor cell lines by chromosome 11. Hum Genet. 1992 Mar;88(5):524–528. doi: 10.1007/BF00219338. [DOI] [PubMed] [Google Scholar]
  131. Pryor W. A., Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993 May 28;686:12–28. doi: 10.1111/j.1749-6632.1993.tb39148.x. [DOI] [PubMed] [Google Scholar]
  132. Purmal A. A., Kow Y. W., Wallace S. S. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro. Nucleic Acids Res. 1994 Jan 11;22(1):72–78. doi: 10.1093/nar/22.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Rachmilewitz D., Stamler J. S., Karmeli F., Mullins M. E., Singel D. J., Loscalzo J., Xavier R. J., Podolsky D. K. Peroxynitrite-induced rat colitis--a new model of colonic inflammation. Gastroenterology. 1993 Dec;105(6):1681–1688. doi: 10.1016/0016-5085(93)91063-n. [DOI] [PubMed] [Google Scholar]
  134. Rao G. N., Lassègue B., Griendling K. K., Alexander R. W. Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cells: role of arachidonic acid. Oncogene. 1993 Oct;8(10):2759–2764. [PubMed] [Google Scholar]
  135. Reid T. M., Feig D. I., Loeb L. A. Mutagenesis by metal-induced oxygen radicals. Environ Health Perspect. 1994 Sep;102 (Suppl 3):57–61. doi: 10.1289/ehp.94102s357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Reid T. M., Loeb L. A. Tandem double CC-->TT mutations are produced by reactive oxygen species. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3904–3907. doi: 10.1073/pnas.90.9.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Ribeiro D. T., De Oliveira R. C., Di Mascio P., Menck C. F. Singlet oxygen induces predominantly G to T transversions on a single-stranded shuttle vector replicated in monkey cells. Free Radic Res. 1994 Aug;21(2):75–83. doi: 10.3109/10715769409056559. [DOI] [PubMed] [Google Scholar]
  138. Richter C. Reactive oxygen and DNA damage in mitochondria. Mutat Res. 1992 Sep;275(3-6):249–255. doi: 10.1016/0921-8734(92)90029-o. [DOI] [PubMed] [Google Scholar]
  139. Rosin M. P., Anwar W. A., Ward A. J. Inflammation, chromosomal instability, and cancer: the schistosomiasis model. Cancer Res. 1994 Apr 1;54(7 Suppl):1929s–1933s. [PubMed] [Google Scholar]
  140. Rosin M. P. The use of the micronucleus test on exfoliated cells to identify anti-clastogenic action in humans: a biological marker for the efficacy of chemopreventive agents. Mutat Res. 1992 Jun;267(2):265–276. doi: 10.1016/0027-5107(92)90071-9. [DOI] [PubMed] [Google Scholar]
  141. Ross R. K., Yuan J. M., Yu M. C., Wogan G. N., Qian G. S., Tu J. T., Groopman J. D., Gao Y. T., Henderson B. E. Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet. 1992 Apr 18;339(8799):943–946. doi: 10.1016/0140-6736(92)91528-g. [DOI] [PubMed] [Google Scholar]
  142. Routledge M. N., Wink D. A., Keefer L. K., Dipple A. DNA sequence changes induced by two nitric oxide donor drugs in the supF assay. Chem Res Toxicol. 1994 Sep-Oct;7(5):628–632. doi: 10.1021/tx00041a007. [DOI] [PubMed] [Google Scholar]
  143. Safford S. E., Oberley T. D., Urano M., St Clair D. K. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res. 1994 Aug 15;54(16):4261–4265. [PubMed] [Google Scholar]
  144. Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H., Sekiguchi M. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem. 1993 Nov 5;268(31):23524–23530. [PubMed] [Google Scholar]
  145. Sanford K. K., Parshad R., Price F. M., Tarone R. E., Kraemer K. H. Retinoid protection against x-ray-induced chromatid damage in human peripheral blood lymphocytes. J Clin Invest. 1992 Nov;90(5):2069–2074. doi: 10.1172/JCI116089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Sarafian T. A., Bredesen D. E. Is apoptosis mediated by reactive oxygen species? Free Radic Res. 1994 Jul;21(1):1–8. doi: 10.3109/10715769409056549. [DOI] [PubMed] [Google Scholar]
  147. Satoh M. S., Jones C. J., Wood R. D., Lindahl T. DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6335–6339. doi: 10.1073/pnas.90.13.6335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Satoh M. S., Lindahl T. Enzymatic repair of oxidative DNA damage. Cancer Res. 1994 Apr 1;54(7 Suppl):1899s–1901s. [PubMed] [Google Scholar]
  149. Satoh M. S., Poirier G. G., Lindahl T. NAD(+)-dependent repair of damaged DNA by human cell extracts. J Biol Chem. 1993 Mar 15;268(8):5480–5487. [PubMed] [Google Scholar]
  150. Schreck R., Albermann K., Baeuerle P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
  151. Shacter E., Beecham E. J., Covey J. M., Kohn K. W., Potter M. Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis. 1988 Dec;9(12):2297–2304. doi: 10.1093/carcin/9.12.2297. [DOI] [PubMed] [Google Scholar]
  152. Shigenaga M. K., Hagen T. M., Ames B. N. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10771–10778. doi: 10.1073/pnas.91.23.10771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Shimoda R., Nagashima M., Sakamoto M., Yamaguchi N., Hirohashi S., Yokota J., Kasai H. Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res. 1994 Jun 15;54(12):3171–3172. [PubMed] [Google Scholar]
  154. Sies H., Stahl W., Sundquist A. R. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci. 1992 Sep 30;669:7–20. doi: 10.1111/j.1749-6632.1992.tb17085.x. [DOI] [PubMed] [Google Scholar]
  155. Simmonds N. J., Allen R. E., Stevens T. R., Van Someren R. N., Blake D. R., Rampton D. S. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology. 1992 Jul;103(1):186–196. doi: 10.1016/0016-5085(92)91112-h. [DOI] [PubMed] [Google Scholar]
  156. Simmonds N. J., Rampton D. S. Inflammatory bowel disease--a radical view. Gut. 1993 Jul;34(7):865–868. doi: 10.1136/gut.34.7.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Slater A. F., Nobel C. S., Maellaro E., Bustamante J., Kimland M., Orrenius S. Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem J. 1995 Mar 15;306(Pt 3):771–778. doi: 10.1042/bj3060771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Slater T. F., Cheeseman K. H., Benedetto C., Collins M., Emery S., Maddix S. P., Nodes J. T., Proudfoot K., Burton G. W., Ingold K. U. Studies on the hyperplasia ('regeneration') of the rat liver following partial hepatectomy. Changes in lipid peroxidation and general biochemical aspects. Biochem J. 1990 Jan 1;265(1):51–59. doi: 10.1042/bj2650051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Smith A. G., Francis J. E., Carthew P. Iron as a synergist for hepatocellular carcinoma induced by polychlorinated biphenyls in Ah-responsive C57BL/10ScSn mice. Carcinogenesis. 1990 Mar;11(3):437–444. doi: 10.1093/carcin/11.3.437. [DOI] [PubMed] [Google Scholar]
  160. Sohal R. S., Ku H. H., Agarwal S., Forster M. J., Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev. 1994 May;74(1-2):121–133. doi: 10.1016/0047-6374(94)90104-x. [DOI] [PubMed] [Google Scholar]
  161. Spencer J. P., Jenner A., Aruoma O. I., Evans P. J., Kaur H., Dexter D. T., Jenner P., Lees A. J., Marsden D. C., Halliwell B. Intense oxidative DNA damage promoted by L-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett. 1994 Oct 24;353(3):246–250. doi: 10.1016/0014-5793(94)01056-0. [DOI] [PubMed] [Google Scholar]
  162. St Clair D. K., Wan X. S., Oberley T. D., Muse K. E., St Clair W. H. Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol Carcinog. 1992;6(4):238–242. doi: 10.1002/mc.2940060404. [DOI] [PubMed] [Google Scholar]
  163. Stadtman E. R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993;62:797–821. doi: 10.1146/annurev.bi.62.070193.004053. [DOI] [PubMed] [Google Scholar]
  164. Stein W. D. Analysis of cancer incidence data on the basis of multistage and clonal growth models. Adv Cancer Res. 1991;56:161–213. doi: 10.1016/s0065-230x(08)60481-9. [DOI] [PubMed] [Google Scholar]
  165. Stevens R. G., Jones D. Y., Micozzi M. S., Taylor P. R. Body iron stores and the risk of cancer. N Engl J Med. 1988 Oct 20;319(16):1047–1052. doi: 10.1056/NEJM198810203191603. [DOI] [PubMed] [Google Scholar]
  166. Stevenson M. A., Pollock S. S., Coleman C. N., Calderwood S. K. X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res. 1994 Jan 1;54(1):12–15. [PubMed] [Google Scholar]
  167. Stillwell W. G., Xu H. X., Adkins J. A., Wishnok J. S., Tannenbaum S. R. Analysis of methylated and oxidized purines in urine by capillary gas chromatography-mass spectrometry. Chem Res Toxicol. 1989 Mar-Apr;2(2):94–99. doi: 10.1021/tx00008a004. [DOI] [PubMed] [Google Scholar]
  168. Strand M., Prolla T. A., Liskay R. M., Petes T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274–276. doi: 10.1038/365274a0. [DOI] [PubMed] [Google Scholar]
  169. Swain J. A., Darley-Usmar V., Gutteridge J. M. Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis. FEBS Lett. 1994 Mar 28;342(1):49–52. doi: 10.1016/0014-5793(94)80582-2. [DOI] [PubMed] [Google Scholar]
  170. Takeuchi T., Morimoto K. Crocidolite asbestos increased 8-hydroxydeoxyguanosine levels in cellular DNA of a human promyelocytic leukemia cell line, HL60. Carcinogenesis. 1994 Apr;15(4):635–639. doi: 10.1093/carcin/15.4.635. [DOI] [PubMed] [Google Scholar]
  171. Tamai H., Kachur J. F., Baron D. A., Grisham M. B., Gaginella T. S. Monochloramine, a neutrophil-derived oxidant, stimulates rat colonic secretion. J Pharmacol Exp Ther. 1991 May;257(2):887–894. [PubMed] [Google Scholar]
  172. Tkeshelashvili L. K., Reid T. M., McBride T. J., Loeb L. A. Nickel induces a signature mutation for oxygen free radical damage. Cancer Res. 1993 Sep 15;53(18):4172–4174. [PubMed] [Google Scholar]
  173. Totter J. R. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1763–1767. doi: 10.1073/pnas.77.4.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Trush M. A., Twerdok L. E., Esterline R. L. Comparison of oxidant activities and the activation of benzo(a)pyrene-7,8-dihydrodiol by polymorphonuclear leucocytes from human, rat and mouse. Xenobiotica. 1990 Sep;20(9):925–932. doi: 10.3109/00498259009046908. [DOI] [PubMed] [Google Scholar]
  175. Turk P. W., Weitzman S. A. Free radical DNA adduct 8-OH-deoxyguanosine affects activity of Hpa II and Msp I restriction endonucleases. Free Radic Res. 1995 Sep;23(3):255–258. doi: 10.3109/10715769509064038. [DOI] [PubMed] [Google Scholar]
  176. Van der Vliet A., Smith D., O'Neill C. A., Kaur H., Darley-Usmar V., Cross C. E., Halliwell B. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J. 1994 Oct 1;303(Pt 1):295–301. doi: 10.1042/bj3030295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Wani G., D'Ambrosio S. M. Cell type-specific expression of human 8-oxo-7,8-dihydroguanosine triphosphatase in normal breast and skin tissues in vivo. Carcinogenesis. 1995 Feb;16(2):277–283. doi: 10.1093/carcin/16.2.277. [DOI] [PubMed] [Google Scholar]
  178. Ward A. J., Olive P. L., Burr A. H., Rosin M. P. A sensitivity to oxidative stress is linked to chromosome 11 but is not due to a difference in single strand DNA breakage or repair. Mutat Res. 1993 Oct;294(3):299–308. doi: 10.1016/0921-8777(93)90012-6. [DOI] [PubMed] [Google Scholar]
  179. Wei H., Frenkel K. Relationship of oxidative events and DNA oxidation in SENCAR mice to in vivo promoting activity of phorbol ester-type tumor promoters. Carcinogenesis. 1993 Jun;14(6):1195–1201. doi: 10.1093/carcin/14.6.1195. [DOI] [PubMed] [Google Scholar]
  180. Wei H., Frenkel K. Suppression of tumor promoter-induced oxidative events and DNA damage in vivo by sarcophytol A: a possible mechanism of antipromotion. Cancer Res. 1992 Apr 15;52(8):2298–2303. [PubMed] [Google Scholar]
  181. Weitberg A. B. Effect of combinations of antioxidants on phagocyte-induced sister-chromatid exchanges. Mutat Res. 1989 Sep;224(1):1–4. doi: 10.1016/0165-1218(89)90002-5. [DOI] [PubMed] [Google Scholar]
  182. Weitzman S. A., Gordon L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990 Aug 15;76(4):655–663. [PubMed] [Google Scholar]
  183. Weitzman S. A., Turk P. W., Milkowski D. H., Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1261–1264. doi: 10.1073/pnas.91.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Willett W. C. Diet and health: what should we eat? Science. 1994 Apr 22;264(5158):532–537. doi: 10.1126/science.8160011. [DOI] [PubMed] [Google Scholar]
  185. Wilson V. L., Taffe B. G., Shields P. G., Povey A. C., Harris C. C. Detection and quantification of 8-hydroxydeoxyguanosine adducts in peripheral blood of people exposed to ionizing radiation. Environ Health Perspect. 1993 Mar;99:261–263. doi: 10.1289/ehp.9399261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Wiseman H., Halliwell B. Tamoxifen and related compounds protect against lipid peroxidation in isolated nuclei: relevance to the potential anticarcinogenic benefits of breast cancer prevention and therapy with tamoxifen? Free Radic Biol Med. 1994 Nov;17(5):485–488. doi: 10.1016/0891-5849(94)90176-7. [DOI] [PubMed] [Google Scholar]
  187. Wiseman H., Kaur H., Halliwell B. DNA damage and cancer: measurement and mechanism. Cancer Lett. 1995 Jun 29;93(1):113–120. doi: 10.1016/0304-3835(95)03792-U. [DOI] [PubMed] [Google Scholar]
  188. Wiseman H., Paganga G., Rice-Evans C., Halliwell B. Protective actions of tamoxifen and 4-hydroxytamoxifen against oxidative damage to human low-density lipoproteins: a mechanism accounting for the cardioprotective action of tamoxifen? Biochem J. 1993 Jun 15;292(Pt 3):635–638. doi: 10.1042/bj2920635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Yamashina K., Miller B. E., Heppner G. H. Macrophage-mediated induction of drug-resistant variants in a mouse mammary tumor cell line. Cancer Res. 1986 May;46(5):2396–2401. [PubMed] [Google Scholar]
  190. Yermilov V., Rubio J., Becchi M., Friesen M. D., Pignatelli B., Ohshima H. Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 1995 Sep;16(9):2045–2050. doi: 10.1093/carcin/16.9.2045. [DOI] [PubMed] [Google Scholar]
  191. Zimmerman R., Cerutti P. Active oxygen acts as a promoter of transformation in mouse embryo C3H/10T1/2/C18 fibroblasts. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2085–2087. doi: 10.1073/pnas.81.7.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. de Oliveira R. C., Ribeiro D. T., Nigro R. G., Di Mascio P., Menck C. F. Singlet oxygen induced mutation spectrum in mammalian cells. Nucleic Acids Res. 1992 Aug 25;20(16):4319–4323. doi: 10.1093/nar/20.16.4319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. deRojas-Walker T., Tamir S., Ji H., Wishnok J. S., Tannenbaum S. R. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol. 1995 Apr-May;8(3):473–477. doi: 10.1021/tx00045a020. [DOI] [PubMed] [Google Scholar]
  194. van den Akker E., Lutgerink J. T., Lafleur M. V., Joenje H., Retèl J. The formation of one-G deletions as a consequence of single-oxygen-induced DNA damage. Mutat Res. 1994 Aug 1;309(1):45–52. doi: 10.1016/0027-5107(94)90041-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES